Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Regul Pept ; 139(1-3): 122-7, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17222470

ABSTRACT

The search for novel SUR1-ligands originates from the idea to influence the in vivo behaviour by adding new structural moieties to the glibenclamide structure while preserving its binding affinity. Important application of novel conjugates might be their use as radioactively labelled tracer probes in the non-invasive investigation of the islet mass. It is known that the imaging quality of a tracer could be improved by increasing its hydrophilicity, which leads to a reduced plasma protein binding and diminished the unspecific uptake by various organs. In this study the glucose molecule was chosen as a substitute of glibenclamide to enhance hydrophilicity. As expected glucose conjugation leads to a 12-fold increase of the hydrophilicity. In vitro evaluation showed that the conjugate binds with high affinity to SUR1. Interestingly, in vivo the hypoglycaemic action of the conjugate was of significant shorter duration compared to glibenclamide. In accordance, the conjugate was cleared much faster from the blood stream, due to a significant lower plasma protein binding. In conclusion, glycosylation proved to be a powerful tool for the development of a high affinity glibenclamide ligand with completely different pharmacodynamics. Therefore, the glucose-conjugate could be a potential lead compound for the design of substituted glibenclamide derivatives as islet imaging ligands.


Subject(s)
Glucose/pharmacology , Glyburide/pharmacology , Islets of Langerhans/drug effects , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Animals , Binding, Competitive , COS Cells , Chlorocebus aethiops , Glucose/chemistry , Glucose/pharmacokinetics , Glyburide/chemistry , Glyburide/pharmacokinetics , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/pharmacology , Insulin/metabolism , Islets of Langerhans/metabolism , Molecular Structure , Potassium Channels/genetics , Potassium Channels/metabolism , Potassium Channels, Inwardly Rectifying/genetics , Potassium Channels, Inwardly Rectifying/metabolism , Rats , Receptors, Drug/genetics , Receptors, Drug/metabolism , Sulfonylurea Receptors , Time Factors
2.
Exp Clin Endocrinol Diabetes ; 113(7): 388-95, 2005 Jul.
Article in English | MEDLINE | ID: mdl-16025400

ABSTRACT

Pancreatic islet cell mass (PICM) is a major determinant of the insulin secretory capacity in humans. Currently, the only method for accurate assessment of the PICM is an autopsy study. Thus, development of a technique allowing the non-invasive quantification of PICM is of great interest. The aim of this study was to develop such a non-invasive technique featuring novel fluorine- and (99m)Tc-labelled glibenclamide derivatives. Despite the structural modifications necessary to introduce fluorine into the glibenclamide molecule, all derivatives retained insulin stimulating capacity as well as high affinity binding to human SUR1 when compared to the original glibenclamide. Contrastingly, the lipophilicity of the fluorine-labelled derivatives was altered depending on the particular modification. In the human PET-study a constant but weak radioactive signal could be detected in the pancreas using a fluorine-labelled glibenclamide derivative. However, a reliable assessment and visualisation of the PICM could not be obtained. It can be assumed that the high uptake of the fluorine-labelled tracer e.g. into the the liver and the high plasma protein binding leads to a relatively low signal-to-noise ratio. In case of the presented fluorine-labelled glibenclamide based compounds this could be the result of their invariably high lipophilicity. The development of a (99 m)Tc-labelled glibenclamide derivative with a lower lipophilicity and differing in vivo behaviour, glibenclamide based compounds for non-invasive imaging of the pancreatic islet cell mass may be possible.


Subject(s)
Diabetes Mellitus/diagnostic imaging , Fluorine Radioisotopes , Glyburide/analogs & derivatives , Hypoglycemic Agents , Islets of Langerhans/diagnostic imaging , Radiopharmaceuticals , Technetium , ATP-Binding Cassette Transporters/metabolism , Animals , Glyburide/chemical synthesis , Glyburide/pharmacokinetics , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/pharmacokinetics , Insulin/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Potassium Channels/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley , Receptors, Drug/metabolism , Sulfonylurea Receptors
SELECTION OF CITATIONS
SEARCH DETAIL
...