Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 16808, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798349

ABSTRACT

The relatively low photon-to-current conversion efficiency of dye-sensitized solar cells is their major drawback limiting widespread application. Light harvesting, followed by a series of electron transfer processes, is the critical step in photocurrent generation. An in-depth understanding and fine optimization of those processes are crucial to enhance cell performance. In this work, we synthesize two new bi-ruthenium sensitizers with extended anchoring ligands to gain insight into underlying processes determining photovoltaic action mechanisms. The structure of the compounds has been confirmed, and their properties have been thoroughly examined by various techniques such as NMR, IR, elemental analysis UV-Vis, cyclic voltammetry, and electroabsorption. The experimental characterization has been supported and developed via extensive quantum-chemical calculations, giving a broad view of the presented molecules' properties. Finally, the DSSC devices have been assembled utilizing obtained dyes. The photovoltaic and EIS measurements, combined with performed calculations and fundamental dyes characterization, unraveled an intramolecular electron transfer as an initial step of the electron injection process at the dye/semiconductor interface. The overall photovoltaic action mechanism has been discussed. Our study demonstrates the significance of the anchoring group architecture in the molecular design of new sensitizers for DSSC applications.

2.
Materials (Basel) ; 15(6)2022 Mar 19.
Article in English | MEDLINE | ID: mdl-35329728

ABSTRACT

We present the electric field-induced absorption (electroabsorption, EA) spectra of the solid neat films of tris(bipyridine) Ru(II) complexes, which were recently functionalized in our group as photosensitizers in dye-sensitized solar cells, and we compare them with the results obtained for an archetypal [Ru(bpy)3]2+ ion (RBY). We argue that it is difficult to establish a unique set of molecular parameter values by discrete parametrization of the EA spectra under the Liptay formalism for non-degenerate excited states. Therefore, the experimental EA spectra are compared with the spectra computed by the TDDFT (time-dependent density-functional theory) method, which for the first time explains the mechanism of electroabsorption in tris(bipyridine) Ru complexes without any additional assumptions about the spectral lineshape of the EA signal. We have shown that the main EA feature, in a form close to the absorption second derivative observed in the spectral range of the first MLCT (metal-to-ligand charge transfer) absorption band in Ru(bpy)3(PF6)2, can be attributed to a delocalized and orbitally degenerate excited state. This result may have key implications for the EA mechanism in RBY-based systems that exhibit similar EA spectra due to the robust nature of MLCT electronic states in such systems.

3.
Materials (Basel) ; 14(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070846

ABSTRACT

A series of pure and doped TiO2 nanomaterials with different Zr4+ ions content have been synthesized by the simple sol-gel method. Both types of materials (nanopowders and nanofilms scratched off of the working electrode's surface) have been characterized in detail by XRD, TEM, and Raman techniques. Inserting dopant ions into the TiO2 structure has resulted in inhibition of crystal growth and prevention of phase transformation. The role of Zr4+ ions in this process was explained by performing computer simulations. The three structures such as pure anatase, Zr-doped TiO2, and tetragonal ZrO2 have been investigated using density functional theory extended by Hubbard correction. The computational calculations correlate well with experimental results. Formation of defects and broadening of energy bandgap in defected Zr-doped materials have been confirmed. It turned out that the oxygen vacancies with substituting Zr4+ ions in TiO2 structure have a positive influence on the performance of dye-sensitized solar cells. The overall photoconversion efficiency enhancement up to 8.63% by introducing 3.7% Zr4+ ions into the TiO2 has been confirmed by I-V curves, EIS, and IPCE measurements. Such efficiency of DSSC utilizing the working electrode made by Zr4+ ions substituted into TiO2 material lattice has been for the first time reported.

SELECTION OF CITATIONS
SEARCH DETAIL
...