Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Crystallogr ; 51(Pt 3): 646-654, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29896056

ABSTRACT

MARIA (magnetism reflectometer with high incident angle) is a world class vertical sample reflectometer dedicated to the investigation of thin films in the fields of magnetism, soft matter and biology. The elliptical vertically focusing guide allows one to measure small samples with a typical size of 1 × 1 cm very efficiently. The double-bounce polarizer and the in situ pumped 3He SEOP (spin-exchange optical pumping) neutron spin filter cell for analysing the polarization of the reflected neutron beam can be moved into the beam in seconds. The polarized flux of MARIA amounts to 5 × 107 n (s cm2)-1 at the sample position with a horizontally collimated beam of 3 mrad, a wavelength of λ = 4.5 Šand a wavelength resolution of Δλ/λ = 10%. In the non-polarized mode a flux of 1.2 × 108 n (s cm2)-1 is achieved in this configuration. MARIA is also capable of grazing-incidence small-angle neutron scattering measurements, using a pinhole collimation with two four-segment slits and an absorber that prevents the focusing of the elliptical guide in the vertical direction.

2.
ACS Appl Mater Interfaces ; 6(14): 11333-40, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24995460

ABSTRACT

Azo-modified photosensitive polymers offer the interesting possibility to reshape bulk polymers and thin films by UV-irradiation while being in the solid glassy state. The polymer undergoes considerable mass transport under irradiation with a light interference pattern resulting in the formation of surface relief grating (SRG). The forces inscribing this SRG pattern into a thin film are hard to assess experimentally directly. In the current study, we are proposing a method to probe opto-mechanical stresses within polymer films by characterizing the mechanical response of thin metal films (10 nm) deposited on the photosensitive polymer. During irradiation, the metal film not only deforms along with the SRG formation but ruptures in a regular and complex manner. The morphology of the cracks differs strongly depending on the electrical field distribution in the interference pattern, even when the magnitude and the kinetics of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. In addition, the neutron reflectivity measurements of the metal/polymer interface indicate the penetration of a metal layer within the polymer, resulting in a formation of a bonding layer that confirms the transduction of light-induced stresses in the polymer layer to a metal film.

3.
Nanoscale ; 5(9): 3969-75, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23536023

ABSTRACT

The mesostructure of ordered arrays of anisotropic nanoparticles is controlled by a combination of packing constraints and interparticle interactions, two factors that are strongly dependent on the particle morphology. We have investigated how the degree of truncation of iron oxide nanocubes controls the mesostructure and particle orientation in drop cast mesocrystal arrays. The combination of grazing incidence small-angle X-ray scattering and scanning electron microscopy shows that mesocrystals of highly truncated cubic nanoparticles assemble in an fcc-type mesostructure, similar to arrays formed by iron oxide nanospheres, but with a significantly reduced packing density and displaying two different growth orientations. Strong satellite reflections in the GISAXS pattern indicate a commensurate mesoscopic superstructure that is related to stacking faults in mesocrystals of the anisotropic nanocubes. Our results show how subtle variation in shape anisotropy can induce oriented arrangements of nanoparticles of different structures and also create mesoscopic superstructures of larger periodicity.

SELECTION OF CITATIONS
SEARCH DETAIL
...