Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931646

ABSTRACT

A review of the state of research in the development of conductometric gas sensors based on II-VI semiconductors is given. It was shown that II-VI compounds indeed have properties that are necessary for the development of highly efficient gas sensors. In this case, to achieve the required parameters, all approaches developed for metal oxides can be used. At the same time, during a detailed review, it was concluded that sensors based on II-VI compounds have no prospects for appearing on the gas sensor market. The main obstacle is the instability of the surface state, which leads to poor reproducibility of parameters and drift of sensor characteristics during operation.

2.
Materials (Basel) ; 16(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37512303

ABSTRACT

In this work, we study the effects of treating nanostructured SnO2-SiO2 films derived by a sol-gel method with nitrogen and oxygen plasma. The structural and chemical properties of the films are closely investigated. To quantify surface site activity in the films following treatment, we employed a photocatalytic UV degradation test with brilliant green. Using X-ray photoelectron spectroscopy, it was found that treatment with oxygen plasma led to a high deviation in the stoichiometry of the SnO2 surface and even the appearance of a tin monoxide phase. These samples also exhibited a maximum photocatalytic activity. In contrast, treatment with nitrogen plasma did not lead to any noticeable changes in the material. However, increasing the power of the plasma source from 250 W to 500 W led to the appearance of an SnO fraction on the surface and a reduction in the photocatalytic activity. In general, all the types of plasma treatment tested led to amorphization in the SnO2-SiO2 samples.

3.
Nanomaterials (Basel) ; 13(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37110966

ABSTRACT

This review article covers all types of paper-based humidity sensor, such as capacitive, resistive, impedance, fiber-optic, mass-sensitive, microwave, and RFID (radio-frequency identification) humidity sensors. The parameters of these sensors and the materials involved in their research and development, such as carbon nanotubes, graphene, semiconductors, and polymers, are comprehensively detailed, with a special focus on the advantages/disadvantages from an application perspective. Numerous technological/design approaches to the optimization of the performances of the sensors are considered, along with some non-conventional approaches. The review ends with a detailed analysis of the current problems encountered in the development of paper-based humidity sensors, supported by some solutions.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36986004

ABSTRACT

In the first part of the review article "General considerations" we give information about conventional flexible platforms and consider the advantages and disadvantages of paper when used in humidity sensors, both as a substrate and as a humidity-sensitive material. This consideration shows that paper, especially nanopaper, is a very promising material for the development of low-cost flexible humidity sensors suitable for a wide range of applications. Various humidity-sensitive materials suitable for use in paper-based sensors are analyzed and the humidity-sensitive characteristics of paper and other humidity-sensitive materials are compared. Various configurations of humidity sensors that can be developed on the basis of paper are considered, and a description of the mechanisms of their operation is given. Next, we discuss the manufacturing features of paper-based humidity sensors. The main attention is paid to the consideration of such problems as patterning and electrode formation. It is shown that printing technologies are the most suitable for mass production of paper-based flexible humidity sensors. At the same time, these technologies are effective both in the formation of a humidity-sensitive layer and in the manufacture of electrodes.

5.
Nanomaterials (Basel) ; 13(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903729

ABSTRACT

The titanium carbide MXenes currently attract an extreme amount of interest from the material science community due to their promising functional properties arising from the two-dimensionality of these layered structures. In particular, the interaction between MXene and gaseous molecules, even at the physisorption level, yields a substantial shift in electrical parameters, which makes it possible to design gas sensors working at RT as a prerequisite to low-powered detection units. Herein, we consider to review such sensors, primarily based on Ti3C2Tx and Ti2CTx crystals as the most studied ones to date, delivering a chemiresistive type of signal. We analyze the ways reported in the literature to modify these 2D nanomaterials for (i) detecting various analyte gases, (ii) improving stability and sensitivity, (iii) reducing response/recovery times, and (iv) advancing a sensitivity to atmospheric humidity. The most powerful approach based on designing hetero-layers of MXenes with other crystals is discussed with regard to employing semiconductor metal oxides and chalcogenides, noble metal nanoparticles, carbon materials (graphene and nanotubes), and polymeric components. The current concepts on the detection mechanisms of MXenes and their hetero-composites are considered, and the background reasons for improving gas-sensing functionality in the hetero-composite when compared with pristine MXenes are classified. We formulate state-of-the-art advances and challenges in the field while proposing some possible solutions, in particular via employing a multisensor array paradigm.

6.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36677992

ABSTRACT

This article discusses the features of the synthesis and application of porous two-dimensional nanomaterials in developing conductometric gas sensors based on metal oxides. It is concluded that using porous 2D nanomaterials and 3D structures based on them is a promising approach to improving the parameters of gas sensors, such as sensitivity and the rate of response. The limitations that may arise when using 2D structures in gas sensors intended for the sensor market are considered.

7.
Nanomaterials (Basel) ; 12(11)2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35683779

ABSTRACT

The surface properties of zinc oxide powders prepared using mechanical activation, electron beam irradiation, and vacuum annealing, as well using combinations of these types of treatments, were studied using X-ray photoelectron spectroscopy. The structure of the obtained materials was studied by an X-ray diffraction technique and by scanning electron microscopy. We found that over five hours of grinding in an attritor, the size of nanocrystals decreases from 37 to 21 nm, and microdeformations increase from 0.3% to 0.6%. It was also found that a five-hour grinding treatment promoted formation of vacancies in the zinc sublattice at the surface and diffusion of Zn2+ cations into the bulk of the material. Irradiation of commercial zinc oxide powders with an electron beam with an energy of 0.9 MeV and a dose of 1 MGy induced breaking of Zn-O bonds, diffusion of interstitial zinc ions into the bulk, and oxygen atom escape from regular positions into the gas phase. A combined treatment of five hours of grinding and electron beam irradiation promoted accumulation of interstitial zinc ions at the surface of the material. Annealing of both initial and mechanically activated ZnO powders at temperatures up to 400 °C did not lead to a significant change in the properties of the samples. Upon exceeding the 400 °C annealing temperature the X-ray photoelectron spectra show almost identical atomic composition of the two types of materials, which is related to diffusion of interstitial zinc ions from the bulk of the material to the surface.

8.
Sensors (Basel) ; 22(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35591162

ABSTRACT

Herein, we review printing technologies which are commonly approbated at recent time in the course of fabricating gas sensors and multisensor arrays, mainly of chemiresistive type. The most important characteristics of the receptor materials, which need to be addressed in order to achieve a high efficiency of chemisensor devices, are considered. The printing technologies are comparatively analyzed with regard to, (i) the rheological properties of the employed inks representing both reagent solutions or organometallic precursors and disperse systems, (ii) the printing speed and resolution, and (iii) the thickness of the formed coatings to highlight benefits and drawbacks of the methods. Particular attention is given to protocols suitable for manufacturing single miniature devices with unique characteristics under a large-scale production of gas sensors where the receptor materials could be rather quickly tuned to modify their geometry and morphology. We address the most convenient approaches to the rapid printing single-crystal multisensor arrays at lab-on-chip paradigm with sufficiently high resolution, employing receptor layers with various chemical composition which could replace in nearest future the single-sensor units for advancing a selectivity.


Subject(s)
Gases , Ink , Lab-On-A-Chip Devices , Gases/analysis , Rheology
9.
Nanomaterials (Basel) ; 11(6)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34208104

ABSTRACT

Electrospun metal oxide nanofibers, due to their unique structural and electrical properties, are now being considered as materials with great potential for gas sensor applications. This critical review attempts to assess the feasibility of these perspectives. The article in Part 1 discusses the basic principles of electrospinning and the features of the formation of metal oxide nanofibers using this method. Approaches to optimization of nanofibers' parameters important for gas sensor application are also considered.

10.
Nanomaterials (Basel) ; 11(6)2021 Jun 12.
Article in English | MEDLINE | ID: mdl-34204655

ABSTRACT

Electrospun metal oxide nanofibers, due to their unique structural and electrical properties, are now being considered as materials with great potential for gas sensor applications. This critical review attempts to assess the feasibility of these perspectives. This article discusses approaches to the manufacture of nanofiber-based gas sensors, as well as the results of analysis of the performances of these sensors. A detailed analysis of the disadvantages that can limit the use of electrospinning technology in the development of gas sensors is also presented in this article. It also proposes some approaches to solving problems that limit the use of nanofiber-based gas sensors. Finally, the summary provides an insight into the future prospects of electrospinning technology for the development of gas sensors aimed for the gas sensor market.

11.
Sensors (Basel) ; 21(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800333

ABSTRACT

We considered the effect of coverage of the surface of In2O3 films with rhodium on the sensitivity of their electrophysical properties to ozone (1 ppm). The surface coverage with rhodium varied in the range of 0-0.1 ML. The In2O3 films deposited by spray pyrolysis had a thickness of 40-50 nm. The sensor response to ozone depends on the degree of rhodium coverage. This dependence has a pronounced maximum at a coverage of ~0.01 ML of Rh. An explanation is given for this effect. It is concluded that the observed changes are associated with the transition from the atomically dispersed state of rhodium to a 3D cluster state.

12.
Nanomaterials (Basel) ; 11(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925345

ABSTRACT

We report on a comprehensive theoretical and experimental investigation of thermal conductivity in indium-tin-oxide (ITO) thin films with various Ga concentrations (0-30 at. %) deposited by spray pyrolysis technique. X-ray diffraction (XRD) and scanning electron microscopy have shown a structural transformation in the range 15-20 at. % Ga from the nanocrystalline to the amorphous phase. Room temperature femtosecond time domain thermoreflectance measurements showed nonlinear decrease of thermal conductivity in the range 2.0-0.5 Wm-1 K-1 depending on Ga doping level. It was found from a comparison between density functional theory calculations and XRD data that Ga atoms substitute In atoms in the ITO nanocrystals retaining Ia-3 space group symmetry. The calculated phonon dispersion relations revealed that Ga doping leads to the appearance of hybridized metal atom vibrations with avoided-crossing behavior. These hybridized vibrations possess shortened mean free paths and are the main reason behind the thermal conductivity drop in nanocrystalline phase. An evolution from propagative to diffusive phonon thermal transport in ITO:Ga with 15-20 at. % of Ga was established. The suppressed thermal conductivity of ITO:Ga thin films deposited by spray pyrolysis may be crucial for their thermoelectric applications.

13.
Nanomaterials (Basel) ; 10(7)2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32708967

ABSTRACT

This article discusses the main uses of 1D and 2D nanomaterials in the development of conductometric gas sensors based on metal oxides. It is shown that, along with the advantages of these materials, which can improve the parameters of gas sensors, there are a number of disadvantages that significantly limit their use in the development of devices designed for the sensor market.

14.
Sensors (Basel) ; 19(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818818

ABSTRACT

The prospects of using nanostructured black phosphorus for the development of humidity sensors are considered. It was shown that black phosphorus has a set of parameters that distinguish it from other two-dimensional (2D) materials such as graphene, silicone, and dichalcogenides. At the same time, an analysis of shortcomings, limiting the use of black phosphorus as a humidity sensitive material in devices aimed for market of humidity sensors, was also conducted.

15.
Chem Rev ; 109(3): 1402-33, 2009 Mar 11.
Article in English | MEDLINE | ID: mdl-19222198
SELECTION OF CITATIONS
SEARCH DETAIL
...