Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biofizika ; 56(1): 13-30, 2011.
Article in Russian | MEDLINE | ID: mdl-21442881

ABSTRACT

The influence of three chemical chaperones: glycerol, 4-hexylresorcinol, and 5-methylresorcinol on the structure, equilibrium fluctuations, and the functional activity of the hydrophilic enzyme lysozyme and the transmembrane reaction center (RC) protein from Rb. sphaeroides in a broad range of concentrations has been studied. Selected chemical chaperones are strongly different by the structure and action on hydrophilic and membrane proteins. The influence of the chemical chaperones (except methylresorcinol) on the structure, dynamics, and functional properties of lysozyme and RC protein are well described within the frames of extended models of preferential hydration and preferential interaction of protein with a chemical chaperone. A molecule of hexylresorcinol consists of a hydrophobic (alkyl radical) and a hydrophilic (aromatic nuclus) moieties. This fact provides additional regulation of functional activity of lysozyme and RC by hexylresorcinol. The influence of methylresorcinol on proteins differs from that of glycerol and hexylresorcinol. Methylresorcinol interacts with the surface of lysozyme directly, not via water hydrogen bonds. This leads to a decrease in denaturation temperature T(d), and an increase in the amplitude of equilibrium fluctuation, which allows him to be a powerful activator. Methylresorcinol interacts with the membrane RC protein only by the condensation of hydration water, which is negligible in the case of methylresorcinol. Therefore, methylresorcinol does not effect the functional properties of the RC protein. It was concluded that various chaperones at one and the same concentration and chaperones at different concentrations form diverse 3D structures of proteins, which differ by dynamic and functional characteristics.


Subject(s)
Glycerol/chemistry , Hexanes/chemistry , Muramidase/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Resorcinols/chemistry , Rhodobacter sphaeroides/chemistry , Hexylresorcinol , Models, Chemical , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Water/chemistry
2.
Prikl Biokhim Mikrobiol ; 44(2): 159-67, 2008.
Article in Russian | MEDLINE | ID: mdl-18669257

ABSTRACT

Kinetic characteristics of model enzymes and physicochemical properties of globular proteins modified by chemical analogues of low-molecular-weight microbial autoregulators (alkylhydroxybenzenes, AHBs) have been studied. C7 and C12 AHB homologues were used, differing in the length of the alkyl radical and the capacity for weak physicochemical interactions. Both homologues affected the degree of protein swelling, viscosity, and the degree of hydrophobicity. The effects depended on the structure of AHBs, their concentration, and pH of the solution, which likely reflects changes in the charge of the protein globule and its solvate cover. Variations of hydrophobicity indices of AHB-modified enzymes (trypsin and lysozyme) were coupled to changes in the catalytic activity. The values of K(M), measured for the enzymes within both AHB complexes, did not change, whereas V(max) increased (in the case of C7 complexes) or decreased (C12 complexes). Possible molecular mechanisms of changes in the physicochemical and catalytic parameters of enzymatically active proteins, induced by modification with structurally distinct AHBs, are described, with emphasis on targeted regulation of functional activity.


Subject(s)
Gelatin/chemistry , Muramidase/chemistry , Resorcinols/chemistry , Trypsin/chemistry , Enzyme Activation , Hydrophobic and Hydrophilic Interactions , Protein Conformation , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...