Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 12(12)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36551066

ABSTRACT

A long period grating Mach-Zehnder interferometer (LPGMZI) that consists of two identical long period gratings (LPGs) in a single fibre was developed to measure immunoglobulin M (IgM). The measured spectrum has fringes due to the interference between the core mode and cladding mode. This immunosensor inherits the advantages of an LPG and has the potential to compensate for unwanted signal changes due to bulk refractive index (RI) and temperature fluctuations by analysing interference fringes and their envelope. The external RI was measured from 1.3384 to 1.3670 in two different cases: (i) only the connecting section between the two LPGs is immersed or (ii) the whole LPGMZI is immersed. The fringes shift with an external RI in both scenarios, whereas the envelope stays still in case (i) or shifts at the same rate as the fringes in case (ii). The LPGMZI was also characterised at different temperatures between 25 °C and 30 °C by placing the whole LPGMZI in a water bath. The fringes and envelope shift at the same rate with temperature. The LPGMZI platform was then used to create an IgM immunosensor. The connecting section between the two LPGs was functionalised with anti-IgM and immersed into solutions with IgM concentrations from 20 µg/mL to 320 µg/mL. The fringes shift with IgM concentration and the envelope remains static. The results from this work show that LPGMZI has the potential to compensate for the temperature and bulk RI fluctuations and perform as a portable biosensor platform.


Subject(s)
Biosensing Techniques , Refractometry , Refractometry/methods , Temperature , Interferometry/methods , Immunoassay
2.
Sensors (Basel) ; 22(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35270942

ABSTRACT

Compression therapy is widely used as the gold standard for management of chronic venous insufficiency and venous leg ulcers, and the amount of pressure applied during the compression therapy is crucial in supporting healing. A fibre optic pressure sensor using Fibre Bragg Gratings (FBGs) is developed in this paper to measure sub-bandage pressure whilst removing cross-sensitivity due to strain in the fibre and temperature. The interface pressure is measured by an FBG encapsulated in a polymer and housed in a textile to minimise discomfort for the patient. The repeatability of a manual fabrication process is investigated by fabricating and calibrating ten sensors. A customized calibration setup consisting of a programmable translation stage and a weighing scale gives sensitivities in the range 0.4-1.5 pm/mmHg (2.6-11.3 pm/kPa). An alternative calibration method using a rigid plastic cylinder and a blood pressure cuff is also demonstrated. Investigations are performed with the sensor under a compression bandage on a phantom leg to test the response of the sensor to changing pressures in static situations. Measurements are taken on a human subject to demonstrate changes in interface pressure under a compression bandage during motion to mimic a clinical application. These results are compared to the current gold standard medical sensor using a Bland-Altman analysis, with a median bias ranging from -4.6 to -20.4 mmHg, upper limit of agreement (LOA) from -13.5 to 2.7 mmHg and lower LOA from -32.4 to -7.7 mmHg. The sensor has the potential to be used as a training tool for nurses and can be left in situ to monitor bandage pressure during compression therapy.


Subject(s)
Compression Bandages , Varicose Ulcer , Calibration , Humans , Temperature , Varicose Ulcer/therapy , Wound Healing
3.
Opt Laser Technol ; 147: None, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35241861

ABSTRACT

Colorimetric measurement is a versatile, low-cost method for bio-/chemical sensing and that has importance in biomedical applications. General carbon dioxide (CO2) sensors based on colorimetric change of a pH indicator report only one parameter at a time and are cross-sensitive to relative humidity (RH). This work describes a novel optical fiber sensor with a thin film on the distal end of the fiber, combining colorimetric measurement and a white light Fabry-Pérot interferometer (FPI) for the simultaneous measurement of CO2 and RH. The CO2 sensitive dye ion-pair: thymol blue and tetramethylammonium hydroxide are encapsulated inside organically modified silica forming an extrinsic FPI cavity (refractive index of 1.501 ± 0.02 and thickness of 5.83 ± 0.09 µm). The sensor reversibly responds to 0-6% CO2 and 0-90% RH with negligible cross-sensitivity and allows measurement of both parameters simultaneously. A sensitivity of ∼0.19 nm/%RH is obtained for RH measurement based on the wavelength shift of the FPI and there is a polynomial correlation between the average intensity of selected wavelengths and the concentration of CO2. The applicability of the sensor is demonstrated by measuring the CO2 and RH exhaled from human breath with a percent error of 3.1% and 2.2% respectively compared to a commercial datalogger. A simulation model is provided for the dye-encapsulated FPI sensor allowing simulation of spectra of sensors with different film thicknesses.

4.
Sens Actuators B Chem ; 353: 131157, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35177879

ABSTRACT

This work reports an optical fibre probe functionalised with 'cotton-shaped' gold-silica nanostructures for relative humidity (RH) monitoring. The sensor response utilises the localised surface plasmon resonance (LSPR) of self-assembled nanostructures: gold nanospheres (40 nm) surrounded by one layer of poly (allylamine hydrochloride) and hydrophilic silica nanoparticles (10-20 nm) on the end-facet of an optical fibre via a wavelength shift of the reflected light. Sensor optimisation is investigated by varying the density of gold nanoparticles on the end-facet of an optical fibre. It is demonstrated that the plasmonic hybridisation mode appearing when the average gold interparticle distance is small (Median: 7.5 nm) is more sensitive to RH after functionalisation than the singular plasmonic mode. The plasmonic hybridisation mode sensor demonstrates a high linear regression to RH with a sensitivity of 0.63 nm/%RH and excellent reversibility. The response time (T10-90%) and recovery time (T90-10%) are calculated as 1.2 ± 0.4 s and 0.95 ± 0.18 s. The sensor shows no measurable cross-talk to temperature in the tested range between 25 °C to 40 °C and the 95% limit of agreement is 3.1%RH when compared to a commercial reference sensor. Simulation with finite element analysis reveals a polarisation-dependent plasmonic hybridisation with a redshift of plasmonic wavelength as a decrease of the interparticle distance and a higher refractive index sensitivity, which results in a high sensitivity to RH as observed in the experiment.

5.
Sensors (Basel) ; 21(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34577279

ABSTRACT

Capillary refill time (CRT) refers to the time taken for body tissue to regain its colour after an applied blanching pressure is released. Usually, pressure is manually applied and not measured. Upon release of pressure, simple mental counting is typically used to estimate how long it takes for the skin to regain its colour. However, this method is subjective and can provide inaccurate readings due to human error. CRT is often used to assess shock and hydration but also has the potential to assess peripheral arterial disease which can result in tissue breakdown, foot ulcers and ultimately amputation, especially in people with diabetes. The aim of this study was to design an optical fibre sensor to simultaneously detect blood volume changes and the contact pressure applied to the foot. The CRT probe combines two sensors: a plastic optical fibre (POF) based on photoplethysmography (PPG) to measure blood volume changes and a fibre Bragg grating to measure skin contact pressure. The results from 10 healthy volunteers demonstrate that the blanching pressure on the subject's first metatarsal head of the foot was 100.8 ± 4.8 kPa (mean and standard deviation), the average CRT was 1.37 ± 0.46 s and the time to achieve a stable blood volume was 4.77 ± 1.57 s. For individual volunteers, the fastest CRT measured was 0.82 ± 0.11 and the slowest 1.94 ± 0.49 s. The combined sensor and curve fitting process has the potential to provide increased reliability and accuracy for CRT measurement of the foot in diabetic foot ulcer clinics and in the community.


Subject(s)
Diabetic Foot , Optical Fibers , Foot , Humans , Photoplethysmography , Reproducibility of Results
6.
Biosens Bioelectron ; 177: 113002, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33486137

ABSTRACT

Butyrylfentanyl is a new designer drug reported with growing use and related deaths. Routine toxicological analyses of this novel synthetic opioid drug have not been established yet. This work reports a fibre optic sensor that measures carboxyl-fentanyl which is the major metabolite of butyrylfentanyl presented in blood, providing a promising tool for detecting butyrylfentanyl intoxication. A long period fibre grating (LPG) sensor array operating at phase-matching condition is deployed in combination with a state-of-the-art molecular imprinting technique. Nano-sized molecularly imprinted polymers (nanoMIPs) are synthesised via a solid-phase approach and coated on the surface of an LPG array. An LPG array consists of two parts: a detection and a reference LPG. The former is functionalised with nanoMIPs prior to the measurements, whilst the latter is used to take into account the temperature response of the detection LPG. The developed sensor exhibits a gradual response over increasing concentrations of carboxyl-fentanyl from 0 to 1000 ng/mL with a minimal detected concentration of 50 ng/mL, that corresponds to a wavelength shift of 1.20 ± 0.2 nm. The Langmuir adsorption isotherm is applied to fit the analytical data which reveal a binding constant of 2.03 µM-1. The developed sensor shows high selectivity in detecting carboxyl-fentanyl among other drugs and potential interferents including morphine, cocaine, glucose and albumin. It shows a certain degree of cross-response to fentanyl which shares the same binding sites as carboxyl-fentanyl and therefore can be potentially used to detect fentanyl.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Nanoparticles , Fentanyl , Optical Fibers
7.
Sensors (Basel) ; 20(22)2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33212998

ABSTRACT

Textile-based systems are an attractive prospect for wearable technology as they can provide monitoring of key physiological parameters in a comfortable and unobtrusive form. A novel system based on multichannel optical fibre sensor probes integrated into a textile sleeve is described. The system measures the photoplethysmogram (PPG) at two wavelengths (660 and 830 nm), which is then used to calculate oxygen saturation (SpO2). In order to achieve reliable measurement without adjusting the position of the garment, four plastic optical fibre (POF) probes are utilised to increase the likelihood that a high-quality PPG is obtained due to at least one of the probes being positioned over a blood vessel. Each probe transmits and receives light into the skin to measure the PPG and SpO2. All POFs are integrated in a stretchable textile sleeve with a circumference of 15 cm to keep the sensor in contact with the subject's wrist and to minimise motion artefacts. Tests on healthy volunteers show that the multichannel PPG sensor faithfully provides an SpO2 reading in at least one of the four sensor channels in all cases with no need for adjusting the position of the sleeve. This could not be achieved using a single sensor alone. The multichannel sensor is used to monitor the SpO2 of 10 participants with an average wrist circumference of 16.0 ± 0.6 cm. Comparing the developed sensor's SpO2 readings to a reference commercial oximeter (reflectance Masimo Radical-7) illustrates that the mean difference between the two sensors' readings is -0.03%, the upper limit of agreement (LOA) is 0.52% and the lower LOA is -0.58%. This multichannel sensor has the potential to achieve reliable, unobtrusive and comfortable textile-based monitoring of both heart rate and SpO2 during everyday life.


Subject(s)
Optical Fibers , Oximetry/instrumentation , Oxygen/blood , Photoplethysmography , Textiles , Humans , Wearable Electronic Devices
8.
Sensors (Basel) ; 20(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235429

ABSTRACT

An optical fibre sensor for monitoring relative humidity (RH) changes during exercise is demonstrated. The humidity sensor comprises a tip coating of poly (allylamine hydrochloride) (PAH)/silica nanoparticles (SiO2 NPs) deposited using the layer-by-layer technique. An uncoated fibre is employed to compensate for bending losses that are likely to occur during movement. A linear fit to the response of the sensing system to RH demonstrates a sensitivity of 3.02 mV/% (R2 = 0.96), hysteresis ± 1.17% RH when 11 bilayers of PAH/SiO2 NPs are coated on the tip of the fibre. The performance of two different textiles (100% cotton and 100% polyester) were tested in real-time relative humidity measurement for 10 healthy volunteers. The results demonstrate the moisture wicking properties of polyester in that the relative humidity dropped more rapidly after cessation of exercise compared to cotton. The approach has the potential to be used to monitor sports performance and by clothing developers for characterising different garment designs.


Subject(s)
Biosensing Techniques , Nanoparticles/chemistry , Textiles , Wearable Electronic Devices , Humans , Humidity , Optical Fibers , Polyamines/chemistry , Refractometry , Silicon Dioxide/chemistry
9.
Sensors (Basel) ; 20(5)2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32138378

ABSTRACT

The widely applied capillary refill time (CRT) measurement is currently performed by manually applying pressure and using a stopwatch to record the time taken for the skin to recover its normal colour after a blanching pressure is applied. This method is highly subjective and observer-dependent. This paper presents a new, integrated optical sensor probe, combining monitoring of the capillary refilling process with the blanching pressure applied. The sensor consists of an optical fibre-based reflectance photoplethysmography (PPG) sensor to measure the reflected light signal, as well as a fibre Bragg grating (FBG) to measure the applied blanching pressure and to indicate the time when pressure is released. This sensor was applied to calculate the CRT (1.38 ± 0.66 s) of 10 healthy adult volunteers with (55.2 ± 21.8 kPa) blanching pressures. The form of the capillary refilling data was investigated by fitting using an exponential regression model (R2 > 0.96). The integrated probe has the potential to improve the reliability of CRT measurements by standardising the optimum duration and magnitude of the pressure.

10.
Biomater Sci ; 8(5): 1464-1477, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-31965132

ABSTRACT

Real time monitoring of bacterial attachment to medical devices provides opportunities to detect early biofilm formation and instigate appropriate interventions before infection develops. This study utilises long period grating (LPG) optical fibre sensors, incorporated into the lumen of endotracheal tubes (ETTs), to monitor in real time, Pseudomonas aeruginosa surface colonisation and biofilm formation. The wavelength shift of LPG attenuation bands was monitored for 24 h and compared with biofilm biomass, quantified using confocal fluorescence microscopy imaging. Biofilm formation was compared on uncoated ETTs and optical fibres, and on a biofilm resistant acrylate polymer, after challenge in an artificial sputum or minimal growth medium (RPMI-1640). The LPG sensor was able to detect a biofilm biomass as low as 81 µg cm-2, by comparison with the confocal image quantification. An empirical exponential function was found to link the optical attenuation wavelength shift with the inverse of the biofilm biomass, allowing quantification of biofouling from the spectral response. Quantification from the sensor allows infection interception and early device removal, to reduce, for example, the risk of ventilator associated pneumonia.


Subject(s)
Acrylates/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Polymers/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Acrylates/chemistry , Anti-Bacterial Agents/chemistry , Biofilms/growth & development , Biomass , Microbial Sensitivity Tests , Optical Fibers , Polymers/chemistry , Surface Properties , Time Factors
11.
Sensors (Basel) ; 18(11)2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30373119

ABSTRACT

A novel optical sensor probe combining monitoring of blood oxygen saturation (SpO2) with contact pressure is presented. This is beneficial as contact pressure is known to affect SpO2 measurement. The sensor consists of three plastic optical fibres (POF) used to deliver and collect light for pulse oximetry, and a fibre Bragg grating (FBG) sensor to measure contact pressure. All optical fibres are housed in a biocompatible epoxy patch which serves two purposes: (i) to reduce motion artefacts in the photoplethysmogram (PPG), and (ii) to transduce transverse loading into an axial strain in the FBG. Test results show that using a combination of pressure measuring FBG with a reference FBG, reliable results are possible with low hysteresis which are relatively immune to the effects of temperature. The sensor is used to measure the SpO2 of ten volunteers under different contact pressures with perfusion and skewness indices applied to assess the quality of the PPG. The study revealed that the contact force ranging from 5 to 15 kPa provides errors of <2%. The combined probe has the potential to improve the reliability of reflectance oximeters. In particular, in wearable technology, the probe should find use in optimising the fitting of garments incorporating this technology.

12.
Opt Express ; 22(7): 8012-23, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718176

ABSTRACT

An optical fibre chemical sensor that is insensitive to interfering parameters including temperature and surrounding refractive index is described. The sensor is based upon a Mach-Zehnder interferometer formed by a pair of identical cascaded long period gratings (LPGs), with the entire device coated with a mesoporous coating of silica nanoparticles. A functional material is infused only into the coating over the section of optical fibre separating the LPGs. The transmission spectrum of the device consists of a channeled spectrum arising from interference of the core and cladding modes within the envelope of the LPG resonance band. Parameters such as temperature, strain and surrounding refractive perturb the entire device, causing the phase of the channeled spectrum and the central wavelength of the envelope shift at the same rate. Exposure of the device to the analyte of interest perturbs only the optical characteristics of the section of fibre into which the functional material was infused, thus influencing only the phase of the channeled spectrum. Measurement of the phase of the channeled spectrum relative to the central wavelength of the envelope allows the monitoring of the concentration of the analyte with no interference from other parameters.

13.
Anal Sci ; 27(3): 253-8, 2011.
Article in English | MEDLINE | ID: mdl-21415506

ABSTRACT

Quartz crystal microbalance (QCM) electrodes modified with nano-thin films were used to develop a system for measuring significant environment changes (smoke, humidity, hazardous material release). A layer-by-layer approach was used for the deposition of sensitive coatings with a nanometer thickness on the electrode surface. The QCM electrode was modified with self-assembled alternate layers of tetrakis-(4-sulfophenyl) porphine (TSPP) (or its manganese derivative, MnTSPP) and poly(diallyldimethylammonium chloride) (PDDA). The QCM sensors, which had been reported previously for humidity sensing purposes, revealing a high possibility to recognize significant environmental changes. Identifying of the origin of environmental change is possible via differential signal analysis of the obtained data. The sensors showed different responses to humidity changes, hazardous gas (ammonia) or cigarette smoke exposure. Even qualitative analysis is not yet available; it has been shown that ventilation triggers or alarms for monitoring smoke or hazardous material release can be built using the obtained result.

14.
Sensors (Basel) ; 11(1): 1177-91, 2011.
Article in English | MEDLINE | ID: mdl-22346621

ABSTRACT

A respiratory monitoring system based on a quartz crystal microbalance (QCM) sensor with a functional film was designed and investigated. Porphyrins 5,10,15,20-tetrakis-(4-sulfophenyl)-21H,23H-porphine (TSPP) and 5,10,15,20-tetrakis-(4-sulfophenyl)-21H, 23H-porphine manganese (III) chloride (MnTSPP) used as sensitive elements were assembled with a poly(diallyldimethyl ammonium chloride) (PDDA). Films were deposited on the QCM resonators using layer-by-layer method in order to develop the sensor. The developed system, in which the sensor response reflects lung movements, was able to track human respiration providing respiratory rate (RR) and respiratory pattern (RP). The sensor system was tested on healthy volunteers to compare RPs and calculate RRs. The operation principle of the proposed system is based on the fast adsorption/desorption behavior of water originated from human breath into the sensor films deposited on the QCM electrode.


Subject(s)
Metalloporphyrins/chemistry , Quartz Crystal Microbalance Techniques , Respiratory Rate/physiology , Biosensing Techniques , Electrodes , Humans , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...