Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods ; 223: 106-117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38295892

ABSTRACT

The connection between the patterns observed in 3C-type experiments and the modeling of polymers remains unresolved. This paper presents a simulation pipeline that generates thermodynamic ensembles of 3D structures for topologically associated domain (TAD) regions by loop extrusion model (LEM). The simulations consist of two main components: a stochastic simulation phase, employing a Monte Carlo approach to simulate the binding positions of cohesins, and a dynamical simulation phase, utilizing these cohesins' positions to create 3D structures. In this approach, the system's total energy is the combined result of the Monte Carlo energy and the molecular simulation energy, which are iteratively updated. The structural maintenance of chromosomes (SMC) protein complexes are represented as loop extruders, while the CCCTC-binding factor (CTCF) locations on DNA sequence are modeled as energy minima on the Monte Carlo energy landscape. Finally, the spatial distances between DNA segments from ChIA-PET experiments are compared with the computer simulations, and we observe significant Pearson correlations between predictions and the real data. LoopSage model offers a fresh perspective on chromatin loop dynamics, allowing us to observe phase transition between sparse and condensed states in chromatin.


Subject(s)
Chromatin , Chromosomal Proteins, Non-Histone , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomes/metabolism , Cohesins
2.
Bioessays ; 45(10): e2200240, 2023 10.
Article in English | MEDLINE | ID: mdl-37603403

ABSTRACT

Recent advances in genomic and imaging techniques have revealed the complex manner of organizing billions of base pairs of DNA necessary for maintaining their functionality and ensuring the proper expression of genetic information. The SMC proteins and cohesin complex primarily contribute to forming higher-order chromatin structures, such as chromosomal territories, compartments, topologically associating domains (TADs) and chromatin loops anchored by CCCTC-binding factor (CTCF) protein or other genome organizers. Cohesin plays a fundamental role in chromatin organization, gene expression and regulation. This review aims to describe the current understanding of the dynamic nature of the cohesin-DNA complex and its dependence on cohesin for genome maintenance. We discuss the current 3C technique and numerous bioinformatics pipelines used to comprehend structural genomics and epigenetics focusing on the analysis of Cohesin-centred interactions. We also incorporate our present comprehension of Loop Extrusion (LE) and insights from stochastic modelling.


Subject(s)
Chromosomal Proteins, Non-Histone , Genome, Human , Humans , Chromosomal Proteins, Non-Histone/genetics , Cell Cycle Proteins/genetics , Chromatin/genetics , Cohesins
3.
Comput Struct Biotechnol J ; 20: 3591-3603, 2022.
Article in English | MEDLINE | ID: mdl-35860407

ABSTRACT

The 2 m-long human DNA is tightly intertwined into the cell nucleus of the size of 10 µm. The DNA packing is explained by folding of chromatin fiber. This folding leads to the formation of such hierarchical structures as: chromosomal territories, compartments; densely-packed genomic regions known as Topologically Associating Domains (TADs), or Chromatin Contact Domains (CCDs), and loops. We propose models of dynamical human genome folding into hierarchical components in human lymphoblastoid, stem cell, and fibroblast cell lines. Our models are based on explosive percolation theory. The chromosomes are modeled as graphs where CTCF chromatin loops are represented as edges. The folding trajectory is simulated by gradually introducing loops to the graph following various edge addition strategies that are based on topological network properties, chromatin loop frequencies, compartmentalization, or epigenomic features. Finally, we propose the genome folding model - a biophysical pseudo-time process guided by a single scalar order parameter. The parameter is calculated by Linear Discriminant Analysis of chromatin features. We also include dynamics of loop formation by using Loop Extrusion Model (LEM) while adding them to the system. The chromatin phase separation, where fiber folds in 3D space into topological domains and compartments, is observed when the critical number of contacts is reached. We also observe that at least 80% of the loops are needed for chromatin fiber to condense in 3D space, and this is constant through various cell lines. Overall, our in-silico model integrates the high-throughput 3D genome interaction experimental data with the novel theoretical concept of phase separation, which allows us to model event-based time dynamics of chromatin loop formation and folding trajectories.

SELECTION OF CITATIONS
SEARCH DETAIL
...