Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
JCO Precis Oncol ; 8: e2300483, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38427930

ABSTRACT

PURPOSE: To meet the urgent need for accessible homologous recombination-deficient (HRD) test options, we validated a laboratory-developed test (LDT) and a functional RAD51 assay to assess patients with ovarian cancer and predict the clinical benefit of poly(ADP-ribose) polymerase inhibitor therapy. METHODS: Optimization of the LDT cutoff and validation on the basis of samples from 91 patients enrolled in the ENGOT-ov24/NSGO-AVANOVA1&2 trial (ClinicalTrials.gov identifier: NCT02354131), previously subjected to commercial CDx HRD testing (CDx). RAD51 foci analysis was performed and tumors with ≥five foci/nucleus were classified as RAD51-positive (homologous recombination-proficient). RESULTS: The optimal LDT cutoff is 54. Comparing CDx genome instability score and LDT HRD scores show a Spearman's correlation of rho = 0.764 (P < .0001). Cross-tabulation analysis shows that the sensitivity of the LDT HRD score is 86% and of the LDT HRD status is 91.8% (Fisher's exact test P < .001). Survival analysis on progression-free survival (PFS) of LDT-assessed patients show a Cox regression P < .05. RAD51 assays show a correlation between low RAD51 foci detection (<20% RAD51+ cells) and significantly prolonged PFS (P < .001). CONCLUSION: The robust concordance between the open standard LDT and the CDx, especially the correlation with PFS, warrants future validation and implementation of the open standard LDT for HRD testing in diagnostic settings.


Subject(s)
Antineoplastic Agents , Ovarian Neoplasms , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Homologous Recombination/genetics , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Progression-Free Survival , Rad51 Recombinase/genetics
2.
Nucleic Acids Res ; 47(15): 8019-8035, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31184714

ABSTRACT

The nucleolus is a nuclear sub-domain containing the most highly transcribed genes in the genome. Hundreds of human ribosomal RNA (rRNA) genes, located in the nucleolus, rely on constant maintenance. DNA double-strand breaks (DSBs) in rRNA genes activate the ATM kinase, repress rRNA transcription and induce nucleolar cap formation. Yet how ribosomal-DNA (rDNA) lesions are detected and processed remains elusive. Here, we use CRISPR/Cas9-mediated induction of DSBs and report a chromatin response unique to rDNA depending on ATM-phosphorylation of the nucleolar protein TCOF1 and recruitment of the MRE11-RAD50-NBS1 (MRN) complex via the NBS1-subunit. NBS1- and MRE11-depleted cells fail to suppress rRNA transcription and to translocate rDNA into nucleolar caps. Furthermore, the DNA damage response (DDR) kinase ATR operates downstream of the ATM-TCOF1-MRN interplay and is required to fully suppress rRNA transcription and complete DSB-induced nucleolar restructuring. Unexpectedly, we find that DSBs in rDNA neither activate checkpoint kinases CHK1/CHK2 nor halt cell-cycle progression, yet the nucleolar-DDR protects against genomic aberrations and cell death. Our data highlight the concept of a specialized nucleolar DNA damage response (n-DDR) with a distinct protein composition, spatial organization and checkpoint communication. The n-DDR maintains integrity of ribosomal RNA genes, with implications for cell physiology and disease.


Subject(s)
Cell Nucleolus/metabolism , Chromatin/genetics , DNA Breaks, Double-Stranded , DNA Repair , Genes, rRNA/genetics , Acid Anhydride Hydrolases , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Checkpoint Kinase 1/genetics , Checkpoint Kinase 1/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA, Ribosomal/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , HEK293 Cells , Humans , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , RNA Interference , Signal Transduction/genetics , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...