Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Microbiol Spectr ; 12(5): e0406823, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38497716

ABSTRACT

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) could aid the diagnosis of acute respiratory infections (ARIs) owing to its affordability and high-throughput capacity. MALDI-TOF MS has been proposed for use on commonly available respiratory samples, without specialized sample preparation, making this technology especially attractive for implementation in low-resource regions. Here, we assessed the utility of MALDI-TOF MS in differentiating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vs non-COVID acute respiratory infections (NCARIs) in a clinical lab setting in Kazakhstan. Nasopharyngeal swabs were collected from inpatients and outpatients with respiratory symptoms and from asymptomatic controls (ACs) in 2020-2022. PCR was used to differentiate SARS-CoV-2+ and NCARI cases. MALDI-TOF MS spectra were obtained for a total of 252 samples (115 SARS-CoV-2+, 98 NCARIs, and 39 ACs) without specialized sample preparation. In our first sub-analysis, we followed a published protocol for peak preprocessing and machine learning (ML), trained on publicly available spectra from South American SARS-CoV-2+ and NCARI samples. In our second sub-analysis, we trained ML models on a peak intensity matrix representative of both South American (SA) and Kazakhstan (Kaz) samples. Applying the established MALDI-TOF MS pipeline "as is" resulted in a high detection rate for SARS-CoV-2+ samples (91.0%), but low accuracy for NCARIs (48.0%) and ACs (67.0%) by the top-performing random forest model. After re-training of the ML algorithms on the SA-Kaz peak intensity matrix, the accuracy of detection by the top-performing support vector machine with radial basis function kernel model was at 88.0%, 95.0%, and 78% for the Kazakhstan SARS-CoV-2+, NCARI, and AC subjects, respectively, with a SARS-CoV-2 vs rest receiver operating characteristic area under the curve of 0.983 [0.958, 0.987]; a high differentiation accuracy was maintained for the South American SARS-CoV-2 and NCARIs. MALDI-TOF MS/ML is a feasible approach for the differentiation of ARI without specialized sample preparation. The implementation of MALDI-TOF MS/ML in a real clinical lab setting will necessitate continuous optimization to keep up with the rapidly evolving landscape of ARI.IMPORTANCEIn this proof-of-concept study, the authors used matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and machine learning (ML) to identify and distinguish acute respiratory infections (ARI) caused by SARS-CoV-2 versus other pathogens in low-resource clinical settings, without the need for specialized sample preparation. The ML models were trained on a varied collection of MALDI-TOF MS spectra from studies conducted in Kazakhstan and South America. Initially, the MALDI-TOF MS/ML pipeline, trained exclusively on South American samples, exhibited diminished effectiveness in recognizing non-SARS-CoV-2 infections from Kazakhstan. Incorporation of spectral signatures from Kazakhstan substantially increased the accuracy of detection. These results underscore the potential of employing MALDI-TOF MS/ML in resource-constrained settings to augment current approaches for detecting and differentiating ARI.


Subject(s)
COVID-19 , Machine Learning , Respiratory Tract Infections , SARS-CoV-2 , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , COVID-19/diagnosis , COVID-19/virology , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/genetics , Kazakhstan , Middle Aged , Male , Sensitivity and Specificity , Adult , Nasopharynx/virology , Female
2.
Healthcare (Basel) ; 11(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998460

ABSTRACT

BACKGROUND: Our study aimed to assess how effective the preventative measures taken by the state authorities during the pandemic were in terms of public health protection and the rational use of material and human resources. MATERIALS AND METHODS: We utilized a stochastic agent-based model for COVID-19's spread combined with the WHO-recommended COVID-ESFT version 2.0 tool for material and labor cost estimation. RESULTS: Our long-term forecasts (up to 50 days) showed satisfactory results with a steady trend in the total cases. However, the short-term forecasts (up to 10 days) were more accurate during periods of relative stability interrupted by sudden outbreaks. The simulations indicated that the infection's spread was highest within families, with most COVID-19 cases occurring in the 26-59 age group. Government interventions resulted in 3.2 times fewer cases in Karaganda than predicted under a "no intervention" scenario, yielding an estimated economic benefit of 40%. CONCLUSION: The combined tool we propose can accurately forecast the progression of the infection, enabling health organizations to allocate specialists and material resources in a timely manner.

3.
PLoS One ; 18(10): e0293074, 2023.
Article in English | MEDLINE | ID: mdl-37851684

ABSTRACT

COVID-19 vaccines have played a critical role in controlling the COVID-19 pandemic. Although overall considered safe, COVID-19 vaccination has been associated with rare but severe thrombotic events, occurring mainly in the context of adenoviral vectored vaccines. A better understanding of mechanisms underlying vaccine-induced hypercoagulability and prothrombotic state is needed to improve vaccine safety profile. We assessed changes to the biomarkers of endothelial function (endothelin, ET-1), coagulation (thrombomodulin, THBD and plasminogen activator inhibitor, PAI) and platelet activation (platelet activating factor, PAF, and platelet factor 4 IgG antibody, PF4 IgG) within a three-week period after the first (prime) and second (boost) doses of Gam-Covid-Vac, an AdV5/AdV26-vectored COVID-19 vaccine. Blood plasma collected from vaccinees (n = 58) was assayed using ELISA assays. Participants were stratified by prior COVID-19 exposure based on their baseline SARS-CoV-2-specific serology results. We observed a significant post-prime increase in circulating ET-1, with levels sustained after the boost dose compared to baseline. ET-1 elevation following dose 2 was most pronounced in vaccinees without prior COVID-19 exposure. Prior COVID-19 was also associated with a mild increase in post-dose 1 PAI. Vaccination was associated with elevated ET-1 up to day 21 after the second vaccine dose, while no marked alterations to other biomarkers, including PF4 IgG, were seen. A role of persistent endothelial activation following COVID-19 vaccination warrants further investigation.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , Pandemics , COVID-19/prevention & control , SARS-CoV-2 , Platelet Activation , Biomarkers , Immunoglobulin G , Platelet Factor 4 , Antibodies, Viral
4.
Healthcare (Basel) ; 11(5)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36900757

ABSTRACT

BACKGROUND: Since the start of the COVID-19 pandemic, scientists have begun to actively use models to determine the epidemiological characteristics of the pathogen. The transmission rate, recovery rate and loss of immunity to the COVID-19 virus change over time and depend on many factors, such as the seasonality of pneumonia, mobility, testing frequency, the use of masks, the weather, social behavior, stress, public health measures, etc. Therefore, the aim of our study was to predict COVID-19 using a stochastic model based on the system dynamics approach. METHOD: We developed a modified SIR model in AnyLogic software. The key stochastic component of the model is the transmission rate, which we consider as an implementation of Gaussian random walks with unknown variance, which was learned from real data. RESULTS: The real data of total cases turned out to be outside the predicted minimum-maximum interval. The minimum predicted values of total cases were closest to the real data. Thus, the stochastic model we propose gives satisfactory results for predicting COVID-19 from 25 to 100 days. The information we currently have about this infection does not allow us to make predictions with high accuracy in the medium and long term. CONCLUSIONS: In our opinion, the problem of the long-term forecasting of COVID-19 is associated with the absence of any educated guess regarding the dynamics of ß(t) in the future. The proposed model requires improvement with the elimination of limitations and the inclusion of more stochastic parameters.

5.
Sci Rep ; 12(1): 13207, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35915123

ABSTRACT

Sputnik-V (Gam-COVID-Vac) is a heterologous, recombinant adenoviral (rAdv) vector-based, COVID-19 vaccine now used in > 70 countries. Yet there is a shortage of data on this vaccine's performance in diverse populations. Here, we performed a prospective cohort study to assess the reactogenicity and immunologic outcomes of Sputnik-V vaccination in Kazakhstan. COVID-19-free participants (n = 82 at baseline) were followed at day 21 after Sputnik-V dose 1 (rAd5) and dose 2 (rAd26). Self-reported local and systemic adverse events were captured using questionnaires. Blood and nasopharyngeal swabs were collected to perform SARS-CoV-2 diagnostic and immunologic assays. We observed that most of the reported adverse events were mild-to-moderate injection site or systemic reactions, no severe or potentially life-threatening conditions were reported, and dose 1 appeared to be more reactogenic than dose 2. The seroconversion rate was 97% post-dose 1, remaining the same post-dose 2. The proportion of participants with detectable virus neutralization was 83% post-dose 1, increasing to 98% post-dose 2, with the largest relative increase observed in participants without prior COVID-19 exposure. Dose 1 boosted nasal S-IgG and S-IgA, while the boosting effect of dose 2 on mucosal S-IgG, but not S-IgA, was only observed in subjects without prior COVID-19. Systemically, vaccination reduced serum levels of growth regulated oncogene (GRO), which correlated with an elevation in blood platelet count. Overall, Sputnik-V dose 1 elicited both blood and mucosal SARS-CoV-2 immunity, while the immune boosting effect of dose 2 was minimal. Thus, adjustments to the current vaccine dosing regimen are necessary to optimize immunization efficacy and cost-effectiveness. While Sputnik-V reactogenicity is similar to that of other COVID-19 vaccines, the induced alterations to the GRO/platelet axis warrant investigation of the vaccine's effects on systemic immunology.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunoglobulin A , Immunoglobulin G , Mucous Membrane , Prospective Studies , SARS-CoV-2
6.
PLoS One ; 17(7): e0272008, 2022.
Article in English | MEDLINE | ID: mdl-35895743

ABSTRACT

COVID-19 exposure in Central Asia appears underestimated and SARS-CoV-2 seroprevalence data are urgently needed to inform ongoing vaccination efforts and other strategies to mitigate the regional pandemic. Here, in a pilot serologic study we assessed the prevalence of SARS-CoV-2 antibody-mediated immunity in a multi-ethnic cohort of public university employees in Karaganda, Kazakhstan. Asymptomatic subjects (n = 100) were recruited prior to their first COVID-19 vaccination. Questionnaires were administered to capture a range of demographic and clinical characteristics. Nasopharyngeal swabs were collected for SARS-CoV-2 RT-qPCR testing. Serological assays were performed to detect spike (S)-reactive IgG and IgA and to assess virus neutralization. Pre-pandemic samples were used to validate the assay positivity thresholds. S-IgG and -IgA seropositivity rates among SARS-CoV-2 PCR-negative participants (n = 100) were 42% (95% CI [32.2-52.3]) and 59% (95% CI [48.8-69.0]), respectively, and 64% (95% CI [53.4-73.1]) of the cohort tested positive for at least one of the antibodies. S-IgG titres correlated with virus neutralization activity, detectable in 49% of the tested subset with prior COVID-19 history. Serologically confirmed history of COVID-19 was associated with Kazakh ethnicity, but not with other ethnic minorities present in the cohort, and self-reported history of respiratory illness since March 2020. Overall, SARS-CoV-2 exposure in this cohort was ~15-fold higher compared to the reported all-time national and regional COVID-19 prevalence, consistent with recent studies of excess infection and death in Kazakhstan. Continuous serological surveillance provides important insights into COVID-19 transmission dynamics and may be used to better inform the regional public health response.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Humans , Immunoglobulin A , Immunoglobulin G , Kazakhstan/epidemiology , Seroepidemiologic Studies , Vaccination
7.
Oncotarget ; 12(21): 2215-2222, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34676053

ABSTRACT

The study was conducted to search for polymorphisms located in the 10th chromosome associated with colorectal adenocarcinoma in representatives of the Kazakhstan population. Study was performed with 282 colorectal cancer (CRC) patients and 159 controls. Genotyping of SNPs was performed by QuantStudio 12K Flex PCR. For four significant SNPs inheritance model analysis was performed. Increasing risk of CRC was noted for rs10795668 in log-additive model (OR = 1.45, 95% CI: 1.05-1.99, p = 0.023); for rs1035209 in log-additive model (OR = 1.79, 95% CI: 1.18-2.72, p = 0.003); for rs11190164 in log-additive model (OR = 1.67, 95% CI: 1.17-2.38, p = 0.004). Decreasing risk of CRC was noted for rs10506868 in log-additive model (OR = 0.56, 95% CI: 0.37-0.85, p = 0.006). We detected SNPs that are associated with CRC risk in the Kazakhstan population.

8.
Comput Math Methods Med ; 2015: 983479, 2015.
Article in English | MEDLINE | ID: mdl-25688286

ABSTRACT

We propose the method to compute the nonlinear parameters of heart rhythm (correlation dimension D2 and correlation entropy K2) using 5-minute ECG recordings preferred for screening of population. Conversion of RR intervals' time series into continuous function x(t) allows getting the new time series with different sampling rate dt. It has been shown that for all dt (250, 200, 125, and 100 ms) the cross-plots of D2 and K2 against embedding dimension m for phase-space reconstruction start to level off at m = 9. The sample size N at different sampling rates varied from 1200 at dt = 250 ms to 3000 at dt = 100 ms. Along with, the D2 and K2 means were not statistically different; that is, the sampling rate did not influence the results. We tested the feasibility of the method in two models: nonlinear heart rhythm dynamics in different states of autonomous nervous system and age-related characteristics of nonlinear parameters. According to the acquired data, the heart rhythm is more complex in childhood and adolescence with more influential parasympathetic influence against the background of elevated activity of sympathetic autonomous nervous system.


Subject(s)
Electrocardiography/methods , Heart Rate/physiology , Signal Processing, Computer-Assisted , Adolescent , Adult , Algorithms , Autonomic Nervous System , Child , Computer Simulation , Female , Healthy Volunteers , Humans , Male , Middle Aged , Models, Statistical , Nonlinear Dynamics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...