Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 115(1): 81-96, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36976526

ABSTRACT

Heat stress triggers the accumulation of triacylglycerols in Arabidopsis leaves, which increases basal thermotolerance. However, how triacylglycerol synthesis is linked to thermotolerance remains unclear and the mechanisms involved remain to be elucidated. It has been shown that triacylglycerol and starch degradation are required to provide energy for stomatal opening induced by blue light at dawn. To investigate whether triacylglycerol turnover is involved in heat-induced stomatal opening during the day, we performed feeding experiments with labeled fatty acids. Heat stress strongly induced both triacylglycerol synthesis and degradation to channel fatty acids destined for peroxisomal ß-oxidation through the triacylglycerol pool. Analysis of mutants defective in triacylglycerol synthesis or peroxisomal fatty acid uptake revealed that triacylglycerol turnover and fatty acid catabolism are required for heat-induced stomatal opening in illuminated leaves. We show that triacylglycerol turnover is continuous (1.2 mol% per min) in illuminated leaves even at 22°C. The ß-oxidation of triacylglycerol-derived fatty acids generates C2 carbon units that are channeled into the tricarboxylic acid pathway in the light. In addition, carbohydrate catabolism is required to provide oxaloacetate as an acceptor for peroxisomal acetyl-CoA and maintain the tricarboxylic acid pathway for energy and amino acid production during the day.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Triglycerides/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Fatty Acids/metabolism , Heat-Shock Response , Light , Plant Stomata/metabolism
2.
Biology (Basel) ; 10(9)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34571797

ABSTRACT

Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses.

3.
Plant J ; 106(2): 536-554, 2021 04.
Article in English | MEDLINE | ID: mdl-33506585

ABSTRACT

Soil is a heterogeneous reservoir of essential elements needed for plant growth and development. Plants have evolved mechanisms to balance their nutritional needs based on availability of nutrients. This has led to genetically based variation in the elemental composition, the 'ionome', of plants, both within and between species. We explore this natural variation using a panel of wild-collected, geographically widespread Arabidopsis thaliana accessions from the 1001 Genomes Project including over 1,135 accessions, and the 19 parental accessions of the Multi-parent Advanced Generation Inter-Cross (MAGIC) panel, all with full-genome sequences available. We present an experimental design pipeline for high-throughput ionomic screenings and analyses with improved normalisation procedures to account for errors and variability in conditions often encountered in large-scale, high-throughput data collection. We report quantification of the complete leaf and seed ionome of the entire collection using this pipeline and a digital tool, Ion Explorer, to interact with the dataset. We describe the pattern of natural ionomic variation across the A. thaliana species and identify several accessions with extreme ionomic profiles. It forms a valuable resource for exploratory genetic mapping studies to identify genes underlying natural variation in leaf and seed ionome and genetic adaptation of plants to soil conditions.


Subject(s)
Arabidopsis/metabolism , Nutrients/metabolism , Plant Leaves/metabolism , Seeds/metabolism , Trace Elements/metabolism , Arabidopsis/chemistry , Arabidopsis/genetics , Arabidopsis/physiology , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Nutrients/analysis , Plant Leaves/chemistry , Plant Leaves/physiology , Principal Component Analysis , Seeds/chemistry , Seeds/physiology , Soil , Trace Elements/analysis
4.
Sci Data ; 4: 170184, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29257129

ABSTRACT

Large-scale studies such as the Arabidopsis thaliana '1,001 Genomes' Project require routine genotyping of stocks to avoid sample contamination. To genotype samples efficiently and economically, sequencing must be inexpensive and data processing simple. Here we present SNPmatch, a tool that identifies strains (or inbred lines, or accessions) by matching them to a SNP database. We tested the tool by performing low-coverage resequencing of over 2,000 strains from our lab seed stock collection. SNPmatch correctly genotyped samples from 1-fold coverage sequencing data, and could also identify the parents of F1 or F2 individuals. SNPmatch can be run either on the command line or through AraGeno (https://arageno.gmi.oeaw.ac.at), a web interface that permits sample genotyping from a user-uploaded VCF or BED file.


Subject(s)
Arabidopsis , Genotyping Techniques , Arabidopsis/classification , Arabidopsis/genetics , Genome, Plant , Sequence Analysis, DNA
5.
Nat Genet ; 45(8): 884-890, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23793030

ABSTRACT

Despite advances in sequencing, the goal of obtaining a comprehensive view of genetic variation in populations is still far from reached. We sequenced 180 lines of A. thaliana from Sweden to obtain as complete a picture as possible of variation in a single region. Whereas simple polymorphisms in the unique portion of the genome are readily identified, other polymorphisms are not. The massive variation in genome size identified by flow cytometry seems largely to be due to 45S rDNA copy number variation, with lines from northern Sweden having particularly large numbers of copies. Strong selection is evident in the form of long-range linkage disequilibrium (LD), as well as in LD between nearby compensatory mutations. Many footprints of selective sweeps were found in lines from northern Sweden, and a massive global sweep was shown to have involved a 700-kb transposition.


Subject(s)
Arabidopsis/genetics , Genetic Variation , Genome, Plant , Selection, Genetic , Chromosome Mapping , Chromosomes, Plant , DNA Copy Number Variations , Evolution, Molecular , Genetics, Population , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , INDEL Mutation , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...