Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Transfus Med Hemother ; 49(6): 379-387, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36654977

ABSTRACT

Background: To minimize the risk of disease transmission in cornea transplantation, donor screening for blood-derived viral infections is mandatory. Ideally, pre-mortem blood samples are used, but based on availability, cadaveric blood samples of cornea donors may also be used. However, serological and nucleic acid amplification tests (NATs) need to be validated for the use of cadaveric specimens. Methods: Hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV) 1/2, and Treponema pallidum (syphilis)-specific serological and/or NAT assays were validated on different platforms (Abbott Alinity i, Alinity m, Roche Cobas 6800, and Roche Cobas AmpliPrep/Cobas TaqMan (CAP/CTM)) using (un)spiked paired pre- and post-mortem cornea donor blood samples from the same individual (up to 23.83 h after death) of 28 individuals in accordance with the specifications of the German Federal Institute for Vaccines and Biomedicines (Paul-Ehrlich-Institut [PEI]). In addition, routinely HBV-, HCV- and HIV-PCR-negative tested post-mortem blood samples of 24 individuals were used to assess NAT specificity. Results: For the majority of serological parameters on the Abbott Alinity i (HBsAg, anti-HBc, anti-HBs, anti-HCV, anti-HIV, anti-HTLV 1/2, and anti-Treponema pallidum), ratios of generated test results of (un)spiked paired pre- and post-mortem blood samples differed ≤25%, with an agreement of qualitative pre- and post-mortem test results ranging from 91.2 to 100%. For NAT parameters (HBV, HCV, and HIV) on the Cobas 6800, Alinity m, and CAP/CTM, no significant deviation in virus concentrations (factor >5) of spiked pre- and post-mortem blood samples could be observed. Ct-values of corresponding internal controls did also not differ significantly (>1.5 Ct-values). In addition, no false-positive test results were generated when specificity was assessed. Conclusion: Overall, fluctuations of test results for serological and NAT parameters in pre- and post-mortem blood samples examined in this study, were only limited and within the range of what is also observed when routinely testing fresh patient specimens. We conclude that all examined assays are eligible for the screening of blood samples taken up to about 24 h after the occurrence of death.

2.
J Clin Med ; 10(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945047

ABSTRACT

Testing for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by RT-PCR is a vital public health tool in the pandemic. Self-collected samples are increasingly used as an alternative to nasopharyngeal swabs. Several studies suggested that they are sufficiently sensitive to be a useful alternative. However, there are limited data directly comparing several different types of self-collected materials to determine which material is preferable. A total of 102 predominantly symptomatic adults with a confirmed SARS-CoV-2 infection self-collected native saliva, a tongue swab, a mid-turbinate nasal swab, saliva obtained by chewing a cotton pad and gargle lavage, within 48 h of initial diagnosis. Sample collection was unsupervised. Both native saliva and gargling with tap water had high diagnostic sensitivity of 92.8% and 89.1%, respectively. Nasal swabs had a sensitivity of 85.1%, which was not significantly inferior to saliva (p = 0.092), but 16.6% of participants reported they had difficult in self-collection of this sample. A tongue swab and saliva obtained by chewing a cotton pad had a significantly lower sensitivity of 74.2% and 70.2%, respectively. Diagnostic sensitivity was not related to the presence of clinical symptoms or to age. When comparing self-collected specimens from different material, saliva, gargle lavage or mid-turbinate nasal swabs may be considered for most symptomatic patients. However, complementary experiments are required to verify that differences in performance observed among the five sampling modes were not attributed to collection impairment.

3.
J Virol Methods ; 291: 114102, 2021 05.
Article in English | MEDLINE | ID: mdl-33607117

ABSTRACT

Multiple nucleic acid amplification tests (NATs) are available for the detection of SARS-CoV-2 in clinical specimens, including Laboratory Developed Tests (LDT), commercial high-throughput assays and point-of-care tests. Some assays were just recently released and there is limited data on their clinical performance. We compared the Xpert® Xpress SARS-CoV-2 (Cepheid) and Vivalytic VRI Panel (Schnelltest COVID-19) (Bosch) point-of-care tests with four high-throughput assays and one LDT, the cobas® SARS-CoV-2 test (Roche), the Allplex™ 2019-nCoV Assay (Seegene), the SARS-CoV-2 AMP (Abbott) Kit, the RealStar® SARS-CoV-2 RT-PCR Kit 1.0 (altona) as well as an assay using a SARS-CoV-2 RdRP gene specific primer and probe set. Samples from patients with confirmed SARS-CoV-2 infection, samples from the first and second SARS-CoV-2-PCR External Quality Assessment (EQA) (INSTAND e.V.) and a 10-fold serial dilution of a SARS-CoV-2 cell culture (SARS-CoV-2 Frankfurt 1) supernatant were examined. We determined that the NAT assays examined had a high specificity. Assays using the N gene as target demonstrated the highest sensitivity in the serial dilution panel, while all examined NAT assays showed a comparable sensitivity when testing clinical and EQA samples.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , High-Throughput Screening Assays/methods , Point-of-Care Testing , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Clinical Laboratory Techniques/methods , Humans , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
J Clin Virol ; 40(2): 93-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17766174

ABSTRACT

This review summarizes major issues of verification and validation procedures and describes minimum requirements for verification and validation of diagnostic assays in clinical virology including instructions for CE/IVD-labeled as well as for self-developed ("home-brewed") tests or test systems. It covers techniques useful for detection of virus specific antibodies, for detection of viral antigens, for detection of viral nucleic acids, and for isolation of viruses on cell cultures in the routine virology laboratory.


Subject(s)
Quality Control , Validation Studies as Topic , Virus Diseases/diagnosis , Animals , DNA, Viral/genetics , Humans , Polymerase Chain Reaction , RNA, Viral/genetics , Serologic Tests/standards , Virology/methods , Virology/standards , Viruses/genetics , Viruses/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...