Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Nature ; 616(7957): 553-562, 2023 04.
Article in English | MEDLINE | ID: mdl-37055640

ABSTRACT

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Mutation , Neoplasm Metastasis , Small Cell Lung Carcinoma , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phylogeny , Small Cell Lung Carcinoma/pathology , Liquid Biopsy
2.
Nat Commun ; 13(1): 6782, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351945

ABSTRACT

Germ-line hypomorphism of the pleiotropic transcription factor Myc in mice, either through Myc gene haploinsufficiency or deletion of Myc enhancers, delays onset of various cancers while mice remain viable and exhibit only relatively mild pathologies. Using a genetically engineered mouse model in which Myc expression may be systemically and reversibly hypomorphed at will, we asked whether this resistance to tumour progression is also emplaced when Myc hypomorphism is acutely imposed in adult mice. Indeed, adult Myc hypomorphism profoundly blocked KRasG12D-driven lung and pancreatic cancers, arresting their evolution at the early transition from indolent pre-tumour to invasive cancer. We show that such arrest is due to the incapacity of hypomorphic levels of Myc to drive release of signals that instruct the microenvironmental remodelling necessary to support invasive cancer. The cancer protection afforded by long-term adult imposition of Myc hypomorphism is accompanied by only mild collateral side effects, principally in haematopoiesis, but even these are circumvented if Myc hypomorphism is imposed metronomically whereas potent cancer protection is retained.


Subject(s)
Genes, ras , Pancreatic Neoplasms , Mice , Animals , Transcription Factors/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Cell Line, Tumor
3.
Cancer Discov ; 10(4): 588-607, 2020 04.
Article in English | MEDLINE | ID: mdl-31941709

ABSTRACT

The signature features of pancreatic ductal adenocarcinoma (PDAC) are its fibroinflammatory stroma, poor immune activity, and dismal prognosis. We show that acute activation of Myc in indolent pancreatic intraepithelial neoplasm (PanIN) epithelial cells in vivo is, alone, sufficient to trigger immediate release of instructive signals that together coordinate changes in multiple stromal and immune-cell types and drive transition to pancreatic adenocarcinomas that share all the characteristic stromal features of their spontaneous human counterpart. We also demonstrate that this Myc-driven PDAC switch is completely and immediately reversible: Myc deactivation/inhibition triggers meticulous disassembly of advanced PDAC tumor and stroma and concomitant death of tumor cells. Hence, both the formation and deconstruction of the complex PDAC phenotype are continuously dependent on a single, reversible Myc switch. SIGNIFICANCE: We show that Myc activation in indolent Kras G12D-induced PanIN epithelium acts as an immediate pleiotropic switch, triggering tissue-specific signals that instruct all the diverse signature stromal features of spontaneous human PDAC. Subsequent Myc deactivation or inhibition immediately triggers a program that coordinately disassembles PDAC back to PanIN.See related commentary by English and Sears, p. 495.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Carcinoma, Pancreatic Ductal/pathology , Genes, myc , Humans , Mice , Pancreatic Neoplasms/pathology , Phenotype , Prognosis , Proto-Oncogene Proteins p21(ras)/genetics
4.
Proc Natl Acad Sci U S A ; 116(44): 22399-22408, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611367

ABSTRACT

Cells with higher levels of Myc proliferate more rapidly and supercompetitively eliminate neighboring cells. Nonetheless, tumor cells in aggressive breast cancers typically exhibit significant and stable heterogeneity in their Myc levels, which correlates with refractoriness to therapy and poor prognosis. This suggests that Myc heterogeneity confers some selective advantage on breast tumor growth and progression. To investigate this, we created a traceable MMTV-Wnt1-driven in vivo chimeric mammary tumor model comprising an admixture of low-Myc- and reversibly switchable high-Myc-expressing clones. We show that such tumors exhibit interclonal mutualism wherein cells with high-Myc expression facilitate tumor growth by promoting protumorigenic stroma yet concomitantly suppress Wnt expression, which renders them dependent for survival on paracrine Wnt provided by low-Myc-expressing clones. To identify any therapeutic vulnerabilities arising from such interdependency, we modeled Myc/Ras/p53/Wnt signaling cross talk as an executable network for low-Myc, for high-Myc clones, and for the 2 together. This executable mechanistic model replicated the observed interdependence of high-Myc and low-Myc clones and predicted a pharmacological vulnerability to coinhibition of COX2 and MEK. This was confirmed experimentally. Our study illustrates the power of executable models in elucidating mechanisms driving tumor heterogeneity and offers an innovative strategy for identifying combination therapies tailored to the oligoclonal landscape of heterogenous tumors.


Subject(s)
Genetic Heterogeneity , Mammary Neoplasms, Experimental/genetics , Models, Theoretical , Proto-Oncogene Proteins c-myc/genetics , Animals , Drug Resistance, Neoplasm , Female , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mice , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Wnt Signaling Pathway , ras Proteins/genetics , ras Proteins/metabolism
5.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29195074

ABSTRACT

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Subject(s)
Adenocarcinoma/immunology , Adenoma/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenoma/genetics , Adenoma/pathology , Animals , Carcinogenesis , Chemokines, CC/immunology , Disease Models, Animal , Female , Inflammation/immunology , Inflammation/metabolism , Interleukin-23/immunology , Lung Neoplasms/pathology , Macrophage Inflammatory Proteins/immunology , Macrophages/immunology , Male , Mice , Tumor Microenvironment
6.
Cancer Cell ; 28(6): 743-757, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26678338

ABSTRACT

In several developmental lineages, an increase in MYC expression drives the transition from quiescent stem cells to transit-amplifying cells. We show that MYC activates a stereotypic transcriptional program of genes involved in cell growth in mammary epithelial cells. This change in gene expression indirectly inhibits the YAP/TAZ co-activators, which maintain the clonogenic potential of these cells. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. MYC-dependent growth strains cellular energy resources and stimulates AMP-activated kinase (AMPK). PLD6 alters mitochondrial fusion and fission dynamics downstream of MYC. This change activates AMPK, which in turn inhibits YAP/TAZ. Mouse models and human pathological data show that MYC enhances AMPK and suppresses YAP/TAZ activity in mammary tumors.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Epithelial Cells/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mammary Glands, Human/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Phosphoproteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line , Cell Lineage , Computational Biology , Databases, Genetic , Enzyme Activation , Enzyme Induction , Epithelial Cells/pathology , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Human/pathology , Mice, Transgenic , Mitochondria/pathology , Phenotype , Phospholipase D/biosynthesis , Phospholipase D/genetics , Phosphoproteins/genetics , Phosphorylation , Proto-Oncogene Proteins c-myc/genetics , RNA Interference , Signal Transduction , Time Factors , Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transfection , YAP-Signaling Proteins
7.
Nature ; 468(7323): 567-71, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-21107427

ABSTRACT

Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung/physiopathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/physiopathology , Tumor Suppressor Protein p53/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Disease Models, Animal , Lung Neoplasms/metabolism , Mice , Proto-Oncogene Proteins p21(ras)/metabolism , Tumor Suppressor Protein p53/genetics , ras Proteins/metabolism
8.
Mol Cancer Res ; 6(9): 1452-60, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18723828

ABSTRACT

Lysophosphatidic acid (LPA) is a lipid mediator of a large number of biological processes, including wound healing, brain development, vascular remodeling, and tumor progression. Its role in tumor progression is probably linked to its ability to induce cell proliferation, migration, and survival. In particular, the ascites of ovarian cancers is rich in LPA and has been implicated in growth and invasion of ovarian tumor cells. LPA binds to specific G protein-coupled receptors and thereby activates multiple signal transduction pathways, including those initiated by the small GTPases Ras, Rho, and Rac. We report here a genetic screen with retroviral cDNA expression libraries to identify genes that allow bypass of the p53-dependent replicative senescence response in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen. Using this approach, we identified the LPA receptor type 2 (LPA(2)) and the Rho-specific guanine nucleotide exchange factor Dbs as potent inducers of senescence bypass. Enhanced expression of LPA(2) or Dbs also results in senescence bypass in primary mouse embryo fibroblasts in the presence of wild-type p53, in a Rho GTPase-dependent manner. Our results reveal a novel and unexpected link between LPA signaling and the p53 tumor-suppressive pathway.


Subject(s)
Cellular Senescence/drug effects , Lysophospholipids/pharmacology , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Tumor Suppressor Protein p53/physiology , Animals , Antigens, Polyomavirus Transforming , Blotting, Western , Brain/metabolism , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Library , Green Fluorescent Proteins , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Humans , Mice , Mice, Knockout , Muscle, Striated/cytology , Muscle, Striated/metabolism , Polycythemia Vera/metabolism , Polycythemia Vera/pathology , Receptors, Lysophosphatidic Acid/genetics , Retroviridae/genetics , Rho Guanine Nucleotide Exchange Factors , rho GTP-Binding Proteins/metabolism
9.
J Biol Chem ; 283(36): 24308-13, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18614541

ABSTRACT

The cytokine transforming growth factor beta (TGFbeta) has strong antiproliferative activity in most normal cells but contributes to tumor progression in the later stages of oncogenesis. It is not fully understood which TGFbeta target genes are causally involved in mediating its cytostatic activity. We report here that suppression of the TGFbeta target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference leads to escape from the cytostatic activity of TGFbeta both in human keratinocytes (HaCaTs) and primary mouse embryo fibroblasts. Consistent with this, PAI-1 knock-out mouse embryo fibroblasts are also resistant to TGFbeta growth arrest. Conversely, we show that ectopic expression of PAI-1 in proliferating HaCaT cells induces a growth arrest. PAI-1 knockdown does not interfere with canonical TGFbeta signaling as judged by SMAD phosphorylation and induction of bona fide TGFbeta target genes. Instead, knockdown of PAI-1 results in sustained activation of protein kinase B. Significantly, we find that constitutive protein kinase B activity leads to evasion of the growth-inhibitory action of TGFbeta. Our data are consistent with a model in which induction of PAI-1 by TGFbeta is critical for the induction of proliferation arrest.


Subject(s)
Embryo, Mammalian/metabolism , Fibroblasts/metabolism , Keratinocytes/metabolism , Plasminogen Activator Inhibitor 1/biosynthesis , Serpins/biosynthesis , Transforming Growth Factor beta/metabolism , Animals , Cell Line , Cell Proliferation/drug effects , Embryo, Mammalian/cytology , Enzyme Activation/drug effects , Enzyme Activation/physiology , Fibroblasts/cytology , Humans , Keratinocytes/cytology , Mice , Mice, Knockout , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Serpin E2 , Signal Transduction/drug effects , Signal Transduction/physiology , Smad Proteins/metabolism , Transforming Growth Factor beta/pharmacology
10.
Cell Cycle ; 5(23): 2697-703, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17172853

ABSTRACT

Prolonged propagation of primary diploid fibroblasts in culture activates an ageing process known as replicative senescence, which is considered to provide a barrier against oncogenic transformation. Remarkably, both cell autonomous tumor-suppressive and cell nonautonomous tumor-promoting effects of senescent cells have been reported. Recently, we described that the p53 target gene plasminogen activator inhibitor-1 (PAI-1) is an essential mediator of replicative senescence. PAI-1 antagonizes the protease urokinase-type plasminogen activator (uPA). Both are secreted factors and involved in heterotypic signaling processes such as wound healing, angiogenesis and metastasis. Both uPA and PAI-1 are expressed in senescent cells and their relative abundance controls proliferation downstream of p53. Here, we present data that the effects of PAI-1 and uPA in the senescence response are not strictly cell autonomous. We discuss these findings in the context of the emerging roles of PAI-1 and uPA in heterotypic cellular signaling in senescence, wound healing and metastasis.


Subject(s)
Breast Neoplasms/pathology , Cellular Senescence , Plasminogen Activator Inhibitor 1/metabolism , Wound Healing/physiology , Animals , Fibroblasts/cytology , Fibroblasts/pathology , Homeostasis , Mice , Models, Biological , Paracrine Communication , Stromal Cells/pathology , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/metabolism
11.
Nat Cell Biol ; 8(8): 877-84, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16862142

ABSTRACT

p53 limits the proliferation of primary diploid fibroblasts by inducing a state of growth arrest named replicative senescence - a process which protects against oncogenic transformation and requires integrity of the p53 tumour suppressor pathway. However, little is known about the downstream target genes of p53 in this growth-limiting response. Here, we report that suppression of the p53 target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference (RNAi) leads to escape from replicative senescence both in primary mouse embryo fibroblasts and primary human BJ fibroblasts. PAI-1 knockdown results in sustained activation of the PI(3)K-PKB-GSK3beta pathway and nuclear retention of cyclin D1, consistent with a role for PAI-1 in regulating growth factor signalling. In agreement with this, we find that the PI(3)K-PKB-GSK3beta-cyclin D1 pathway is also causally involved in cellular senescence. Conversely, ectopic expression of PAI-1 in proliferating p53-deficient murine or human fibroblasts induces a phenotype displaying all the hallmarks of replicative senescence. Our data indicate that PAI-1 is not merely a marker of senescence, but is both necessary and sufficient for the induction of replicative senescence downstream of p53.


Subject(s)
Cellular Senescence/physiology , Plasminogen Activator Inhibitor 1/physiology , Tumor Suppressor Protein p53/physiology , Animals , Blotting, Western , Cell Proliferation/drug effects , Cells, Cultured , Cellular Senescence/genetics , Cisplatin/pharmacology , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Mice , Microscopy, Fluorescence , Mutation/genetics , NIH 3T3 Cells , Phosphatidylinositol 3-Kinases/metabolism , Plasminogen Activator Inhibitor 1/genetics , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , Tumor Suppressor Protein p14ARF/metabolism , Tumor Suppressor Protein p53/genetics
12.
J Biol Chem ; 277(8): 6567-72, 2002 Feb 22.
Article in English | MEDLINE | ID: mdl-11748239

ABSTRACT

Prolonged culturing of rodent cells in vitro activates p19(ARF) (named p14(ARF) in man), resulting in a p53-dependent proliferation arrest known as senescence. The p19(ARF)-Mdm2-p53 pathway also serves to protect primary cells against oncogenic transformation. We have used a genetic screen in mouse neuronal cells, conditionally immortalized by a temperature-sensitive mutant of SV40 large T antigen, to identify genes that allow bypass of senescence. Using retroviral cDNA expression libraries, we have identified TBX-3 as a potent inhibitor of senescence. TBX-3 is a T-box gene, which is found mutated in the human developmental disorder Ulnar-Mammary Syndrome. We have shown that TBX-3 potently represses expression of both mouse p19(ARF) and human p14(ARF). We have also shown here that point mutants of TBX-3, which are found in Ulnar-Mammary Syndrome, have lost the ability to inhibit senescence and fail to repress mouse p19(ARF) and human p14(ARF) expression. These data suggest that the hypoproliferative features of this genetic disorder may be caused, at least in part, by deregulated expression of p14(ARF).


Subject(s)
Aging/genetics , Bone Diseases/genetics , Breast Diseases/genetics , Gene Expression Regulation , Mutation , T-Box Domain Proteins/genetics , Tumor Suppressor Protein p14ARF/genetics , Animals , COS Cells , Cell Line , Cells, Cultured , Chlorocebus aethiops , Corpus Striatum/cytology , Cyclin-Dependent Kinase Inhibitor p16 , Embryo, Mammalian , Female , Gene Library , Genes, p16 , Genes, p53 , Humans , Mice , Placenta , Pregnancy , Promoter Regions, Genetic , Retroviridae , Suppression, Genetic , Syndrome , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...