Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Robot ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836749

ABSTRACT

Suction grippers offer a distinct advantage in their ability to handle a wide range of items. However, attaching these grippers to irregular and rough surfaces presents an ongoing challenge. To address this obstacle, this study explores the integration of magnetic intelligence into a soft suction gripper design, enabling fast external magnetic actuation of the attachment process. Additionally, miniaturization options are enhanced by implementing a compliant deploying mechanism. The resulting design is the first-of-its-kind magnetically-actuated deployable suction gripper featuring a thin magnetic membrane (Ø 50 mm) composed of carbonyl iron particles embedded in a silicone matrix. This membrane is supported by a frame made of superelastic nitinol wires that facilitate deployment. During experiments, the proof-of-principle prototype demonstrates successful attachment on a diverse range of curved surfaces in both dry and wet environments. The gripper achieves attachment on curved surfaces with radii of 50-75 mm, exerting a maximum attachment force of 2.89 ± 0.54 N. The current gripper design achieves a folding percentage of 75%, enabling it to fit into a Ø 12.5 mm tube and access hard-to-reach areas while maintaining sufficient surface area for attachment forces. The proposed prototype serves as a foundational steppingstone for further research in the development of reliable and effective magnetically-actuated suction grippers across various configurations. By addressing the limitations of attachment to irregular surfaces and exploring possibilities for miniaturization and precise control, this study opens new avenues for the practical application of suction grippers in diverse industries and scenarios.

2.
Soft Robot ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38813671

ABSTRACT

Robotics is entering our daily lives. The discipline is increasingly crucial in fields such as agriculture, medicine, and rescue operations, impacting our food, health, and planet. At the same time, it is becoming evident that robotic research must embrace and reflect the diversity of human society to address these broad challenges effectively. In recent years, gender inclusivity has received increasing attention, but it still remains a distant goal. In addition, awareness is rising around other dimensions of diversity, including nationality, religion, and politics. Unfortunately, despite the efforts, empirical evidence shows that the field has still a long way to go before achieving a sufficient level of equality, diversity, and inclusion across these spectra. This study focuses on the soft robotics community-a growing and relatively recent subfield-and it outlines the present state of equality and diversity panorama in this discipline. The article argues that its high interdisciplinary and accessibility make it a particularly welcoming branch of robotics. We discuss the elements that make this subdiscipline an example for the broader robotic field. At the same time, we recognize that the field should still improve in several ways and become more inclusive and diverse. We propose concrete actions that we believe will contribute to achieving this goal, and provide metrics to monitor its evolution.

3.
Nat Commun ; 15(1): 539, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225274

ABSTRACT

Soft robots are intrinsically capable of adapting to different environments by changing their shape in response to interaction forces. However, sensory feedback is still required for higher level decisions. Most sensing technologies integrate separate sensing elements in soft actuators, which presents a considerable challenge for both the fabrication and robustness of soft robots. Here we present a versatile sensing strategy that can be retrofitted to existing soft fluidic devices without the need for design changes. We achieve this by measuring the fluidic input that is required to activate a soft actuator during interaction with the environment, and relating this input to its deformed state. We demonstrate the versatility of our strategy by tactile sensing of the size, shape, surface roughness and stiffness of objects. We furthermore retrofit sensing to a range of existing pneumatic soft actuators and grippers. Finally, we show the robustness of our fluidic sensing strategy in closed-loop control of a soft gripper for sorting, fruit picking and ripeness detection. We conclude that as long as the interaction of the actuator with the environment results in a shape change of the interval volume, soft fluidic actuators require no embedded sensors and design modifications to implement useful sensing.

4.
Bioinspir Biomim ; 18(4)2023 05 10.
Article in English | MEDLINE | ID: mdl-37059112

ABSTRACT

Gripping slippery and flexible tissues during minimal invasive surgery (MIS) is often challenging using a conventional tissue gripper. A force grip has to compensate for the low friction coefficient between the gripper's jaws and the tissue surface. This study focuses on the development of a suction gripper. This device applies a pressure difference to grip the target tissue without the need to enclose it. Inspiration is taken from biological suction discs, as these are able to attach to a wide variety of substrates, varying from soft and slimy surfaces to rigid and rough rocks. Our bio-inspired suction gripper is divided into two main parts: (1) the suction chamber inside the handle where vacuum pressure is generated, and (2) the suction tip that attaches to the target tissue. The suction gripper fits through a∅10 mm trocar and unfolds in a larger suction surface when being extracted. The suction tip is structured in a layered manner. The tip integrates five functions in separate layers to allow for safe and effective tissue handling: (1) foldability, (2) air-tightness, (3) slideability, (4) friction magnification and (5) seal generation. The contact surface of the tip creates an air-tight seal with the tissue and enhances frictional support. The suction tip's shape grip allows for the gripping of small tissue pieces and enhances its resistance against shear forces. The experiments illustrated that our suction gripper outperforms man-made suction discs, as well as currently described suction grippers in literature in terms of attachment force (5.95±0.52 N on muscle tissue) and substrate versatility. Our bio-inspired suction gripper offers the opportunity for a safer alternative to the conventional tissue gripper in MIS.


Subject(s)
Mechanical Phenomena , Minimally Invasive Surgical Procedures , Humans , Suction , Hand Strength/physiology , Friction , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...