Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 21(24): 13374, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31169272

ABSTRACT

Correction for 'Sub-Doppler infrared spectroscopy of resonance-stabilized hydrocarbon intermediates: ν3/ν4 CH stretch modes and CH2 internal rotor dynamics of benzyl radical' by A. Kortyna et al., Phys. Chem. Chem. Phys., 2017, 19, 29812-29821.

2.
J Chem Phys ; 150(19): 194304, 2019 May 21.
Article in English | MEDLINE | ID: mdl-31117796

ABSTRACT

The rovibrational spectrum of jet cooled trans-deuteroxycarbonyl (trans-DOCO) radical has been explored at suppressed-Doppler resolution via direct infrared absorption spectroscopy. The trans-DOCO is produced in a supersonic slit discharge of rare-gas/CO mixture doped with D2O, whereby the OD forms an energized adduct with CO, cooling in the supersonic expansion and stabilizing DOCO in the trans well. Active laser-frequency stabilization and collisional quenching of Doppler broadening along the slit axis yield <10 MHz frequency precision, with the absorbance noise approaching the quantum shot-noise limit. The current high-resolution spectral results are in excellent agreement with recent studies of the trans-DOCO radical by infrared frequency comb spectroscopy under room temperature conditions [Bui et al., Mol. Phys. 116, 3710 (2018)]. Combined with previous microwave/millimeter wave rotational studies, the suppressed-Doppler infrared data permit characterization of the vibrational ground state, improved structural parameters for the OD stretch vibrational level, and trans-DOCO spin-rotation information in both ground and excited vibrational states. Additionally, the infrared data reveal a-type and much weaker b-type contributions to the spectrum, analysis of which yields orientation of the OD stretch transition dipole moment in the body fixed frame. Of dynamical interest is whether the nascent trans-DOCO complex formed in the entrance channel has sufficient time to convert into the cis-DOCO isomer, or whether this is quenched by rapid stabilization into the trans-DOCO well. Ab initio and Rice-Ramsperger-Kassel-Marcus analysis of the intrinsic reaction coordinate for trans-DOCO to cis-DOCO interconversion rates supports the latter scenario, which helps explain the failure of previous high resolution infrared efforts to detect cis-hydroxycarbonyl.

3.
J Chem Phys ; 149(7): 074303, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30134693

ABSTRACT

Quantum shot noise limited laser absorption methods are used to obtain first high-resolution infrared rovibrational spectra of jet cooled chlorocarbene (HCCl) diradical in a supersonic slit-jet discharge expansion spectrometer. The rotationally resolved absorption spectra of the C-H stretch ν1 fundamental are analyzed in the framework of a Watson non-rigid asymmetric rotor Hamiltonian model. Further analysis of the mid-infrared data reveals the additional presence of what has nominally been assigned as the X̃(012) combination band with one quantum of the H-C-Cl bend (ν2) and two quanta of the C-Cl stretch (2ν3). Rovibrational constants are obtained from least squares fits for each of the four excited vibrational states built on the ν1 fundamental X̃(100) and the X̃(012) combination mode for each 35Cl and 37Cl atom isotopologue. The four bands occur within a narrow spectral window, requiring detailed comparison of multiple spectral properties (e.g., rotational constant dependence on vibrational excitation, band types/transition dipole moment alignment in the body-fixed frame, etc.) to aid in the vibrational assignment. Indeed, the IR transition intensities arise from strong anharmonic mixing between the "bright" ν1 C-H stretch and "dark" X̃012 H-C-Cl bend/C-Cl stretch combination modes, resulting in nearly equal amplitudes for the zeroth order X̃(100) and X̃012 harmonic states. Finally, to aid the spectral search for HCCl in the interstellar medium, ground state two-line combination differences are combined with previous laser-induced fluorescence results to predict precision microwave transitions for HC35Cl and HC37Cl.

4.
J Chem Phys ; 148(17): 174308, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29739209

ABSTRACT

The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and indeed consistent with observations in other halomethyl radicals and protonated cluster ions.

5.
Phys Chem Chem Phys ; 19(44): 29812-29821, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29099133

ABSTRACT

Highly reactive benzyl radicals are generated by electron dissociative attachment to benzyl chloride doped into a neon-hydrogen-helium discharge and immediately cooled to Trot = 15 K in a high density, supersonic slit expansion environment. The sub-Doppler spectra are fit to an asymmetric-top rotational Hamiltonian, thereby yielding spectroscopic constants for the ground (v = 0) and first excited (v = 1, ν3, ν4) vibrational levels of the ground electronic state. The rotational constants obtained for the ground state are in good agreement with previous laser induced fluorescence measurements (LIF), with vibrational band origins (ν3 = 3073.2350 ± 0.0006 cm-1, ν4 = 3067.0576 ± 0.0006 cm-1) in agreement with anharmonically corrected density functional theory calculations. To assist in detection of benzyl radical in the interstellar medium, we have also significantly improved the precision of the ground state rotational constants through combined analysis of the ground state IR and LIF combination differences. Of dynamical interest, there is no evidence in the sub-Doppler spectra for tunneling splittings due to internal rotation of the CH2 methylene subunit, which implies a significant rotational barrier consistent with partial double bond character in the CC bond. This is further confirmed with high level ab initio calculations at the CCSD(T)-f12b/ccpVdZ-f12 level, which predict a zero-point energy corrected barrier to internal rotation of ΔEtun ≈ 11.45 kcal mol-1 or 4005 cm-1. In summary, the high-resolution infrared spectra are in excellent agreement with simple physical organic chemistry pictures of a strongly resonance-stabilized benzyl radical with a nearly rigid planar structure due to electron delocalization around the aromatic ring.

SELECTION OF CITATIONS
SEARCH DETAIL
...