Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Musculoskelet Disord ; 25(1): 271, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589829

ABSTRACT

BACKGROUND: Single limb support phase of the gait-cycle in patients who are treated for a pertrochanteric fracture is characterized by transversal loads acting on the lag screw, tending to block its dynamization. If the simultaneous axial force overcomes transversal loads of the sliding screw, the dynamization can still occur. METHODS: Biomechanical investigation was performed for three types of dynamic implants: Gamma Nail, and two types of Selfdynamizable Internal Fixators (SIF) - SIF-7 (containing two 7 mm non-cannulated sliding screws), and SIF-10 (containing one 10 mm cannulated sliding screw). Contact surface between the stem and the sliding screws is larger in SIF implants than in Gamma Nail, as the stem of Gamma Nail is hollow. A special testing device was designed for this study to provide simultaneous application of a controlled sliding screws bending moment and a controlled transversal load on sliding screws (Qt) without using of weights. Using each of the implants, axial forces required to initiate sliding screws dynamization (Qa) were applied and measured using a tensile testing machine, for several values of sliding screws bending moment. Standard least-squares method was used to present the results through the linear regression model. RESULTS: Positive correlation between Qt and Qa was confirmed (p < 0.05). While performing higher bending moments in all the tested implants, Qa was higher than it could be provided by the body weight. It was the highest in Gamma Nail, and the lowest in SIF-10. CONCLUSIONS: A larger contact surface between a sliding screw and stem results in lower forces required to initiate dynamization of a sliding screw. Patients treated for a pertrochanteric fracture by a sliding screw internal fixation who have longer femoral neck or higher body weight could have different programme of early postoperative rehabilitation than lighter patients or patients with shorter femoral neck.


Subject(s)
Bone Screws , Femoral Fractures , Humans , Bone Screws/adverse effects , Biomechanical Phenomena , Internal Fixators , Fracture Fixation, Internal , Femoral Fractures/etiology , Body Weight
2.
J Healthc Eng ; 2020: 6689961, 2020.
Article in English | MEDLINE | ID: mdl-33299535

ABSTRACT

The paper reports on the importance of applying the holistic approach in designing a personalized bone scaffold, but also all other kinds of personalized implants. In addition, the paper attempts to point out the important aspects of the design of a PBS against which the quality of a realistic and applicable design solution should be assessed. The holistic approach refers to the adaptation of design features of a bone scaffold to the multilateral specifics related to the particular patient, its surgical case, and curing treatment. To ensure a successful application, five aspects of personalized bone scaffold design should be considered while it is being adapted: anatomical congruency, mechanical conformity, biochemical compatibility and biodegradability, manufacturability, and implantability. To demonstrate the importance of applying a holistic approach in designing a personalized bone scaffold, the paper shows a case where a patient-specific scaffold aimed at the reconstruction of a large missing piece of mandible was designed. The research resulted in a series of recommendations regarding the methods of bone geometry reconstruction and scaffold design. The paper sheds new light on the desired mechanical properties of a personalized bone scaffold while also recommending possible design parameters for optimizing the construction according to these properties. Finally, it recommends a possible procedure of integral production of personalized bone scaffold and bone graft. The presented so-called holistic approach announces a new systematic process of designing a personalized bone scaffold, which, although requiring a comprehensive consideration of complex requirements, is inevitable to make the designed solution applicable.


Subject(s)
Mandible , Plastic Surgery Procedures , Bone Transplantation , Humans , Mandible/surgery , Prostheses and Implants
SELECTION OF CITATIONS
SEARCH DETAIL
...