Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Image Process ; 25(3): 1312-26, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26800540

ABSTRACT

A sliding window-based analysis is a prevailing mechanism for tampering localization in passive image authentication. It uses existing forensic detectors, originally designed for a full-frame analysis, to obtain the detection scores for individual image regions. One of the main problems with a window-based analysis is its impractically low localization resolution stemming from the need to use relatively large analysis windows. While decreasing the window size can improve the localization resolution, the classification results tend to become unreliable due to insufficient statistics about the relevant forensic features. In this paper, we investigate a multi-scale analysis approach that fuses multiple candidate tampering maps, resulting from the analysis with different windows, to obtain a single, more reliable tampering map with better localization resolution. We propose three different techniques for multi-scale fusion, and verify their feasibility against various reference strategies. We consider a popular tampering scenario with mode-based first digit features to distinguish between singly and doubly compressed regions. Our results clearly indicate that the proposed fusion strategies can successfully combine the benefits of small-scale and large-scale analyses and improve the tampering localization performance.

2.
IEEE Trans Image Process ; 22(3): 1134-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23193455

ABSTRACT

This paper presents a new model of the content reconstruction problem in self-embedding systems, based on an erasure communication channel. We explain why such a model is a good fit for this problem, and how it can be practically implemented with the use of digital fountain codes. The proposed method is based on an alternative approach to spreading the reference information over the whole image, which has recently been shown to be of critical importance in the application at hand. Our paper presents a theoretical analysis of the inherent restoration trade-offs. We analytically derive formulas for the reconstruction success bounds, and validate them experimentally with Monte Carlo simulations and a reference image authentication system. We perform an exhaustive reconstruction quality assessment, where the presented reference scheme is compared to five state-of-the-art alternatives in a common evaluation scenario. Our paper leads to important insights on how self-embedding schemes should be constructed to achieve optimal performance. The reference authentication system designed according to the presented principles allows for high-quality reconstruction, regardless of the amount of the tampered content. The average reconstruction quality, measured on 10000 natural images is 37 dB, and is achievable even when 50% of the image area becomes tampered.


Subject(s)
Algorithms , Artificial Intelligence , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Information Storage and Retrieval/methods , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...