Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 100(1-1): 012143, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31499905

ABSTRACT

We consider a model of power distribution in a social system where a set of agents plays a simple game on a graph: The probability of winning each round is proportional to the agent's current power, and the winner gets more power as a result. We show that when the agents are distributed on simple one-dimensional and two-dimensional networks, inequality grows naturally up to a certain stationary value characterized by a clear division between a higher and a lower class of agents. High class agents are separated by one or several lower class agents which serve as a geometrical barrier preventing further flow of power between them. Moreover, we consider the effect of redistributive mechanisms, such as proportional (nonprogressive) taxation. Sufficient taxation will induce a sharp transition towards a more equal society, and we argue that the critical taxation level is uniquely determined by the system geometry. Interestingly, we find that the roughness and Shannon entropy of the power distributions are a very useful complement to the standard measures of inequality, such as the Gini index and the Lorenz curve.


Subject(s)
Models, Theoretical , Social Welfare , Probability , Socioeconomic Factors , Taxes
2.
Phys Rev E ; 95(5-1): 052210, 2017 May.
Article in English | MEDLINE | ID: mdl-28618497

ABSTRACT

We study the synchronization of chaotic units connected through time-delayed fluctuating interactions. Focusing on small-world networks of Bernoulli and Logistic units with a fixed chiral backbone, we compare the synchronization properties of static and fluctuating networks in the regime of large delays. We find that random network switching may enhance the stability of synchronized states. Synchronization appears to be maximally stable when fluctuations are much faster than the time-delay, whereas it disappears for very slow fluctuations. For fluctuation time scales of the order of the time-delay, we report a resynchronizing effect in finite-size networks. Moreover, we observe characteristic oscillations in all regimes, with a periodicity related to the time-delay, as the system approaches or drifts away from the synchronized state.

3.
Phys Rev E ; 93(2): 022206, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986330

ABSTRACT

Chaos synchronization may arise in networks of nonlinear units with delayed couplings. We study complete and sublattice synchronization generated by resonance of two large time delays with a specific ratio. As it is known for single-delay networks, the number of synchronized sublattices is determined by the greatest common divisor (GCD) of the network loop lengths. We demonstrate analytically the GCD condition in networks of iterated Bernoulli maps with multiple delay times and complement our analytic results by numerical phase diagrams, providing parameter regions showing complete and sublattice synchronization by resonance for Tent and Bernoulli maps. We compare networks with the same GCD with single and multiple delays, and we investigate the sensitivity of the correlation to a detuning between the delays in a network of coupled Stuart-Landau oscillators. Moreover, the GCD condition also allows detection of time-delay resonances, leading to high correlations in nonsynchronizable networks. Specifically, GCD-induced resonances are observed both in a chaotic asymmetric network and in doubly connected rings of delay-coupled noisy linear oscillators.

4.
Neural Netw ; 40: 52-72, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23454920

ABSTRACT

Evolutionary neuroscience has been mainly dominated by the principle of phylogenetic conservation, specifically, by the search for similarities in brain organization. This principle states that closely related species tend to be similar because they have a common ancestor. However, explaining, for instance, behavioral differences between humans and chimpanzees, has been revealed to be notoriously difficult. In this paper, the hypothesis of a common information-processing principle exploited by the brains evolved through natural evolution is explored. A model combining recent advances in cognitive psychology and evolutionary neuroscience is presented. The macroscopic effects associated with the intelligence-like structures postulated by the model are analyzed from a statistical mechanics point of view. As a result of this analysis, some plausible explanations are put forward concerning the disparities and similarities in cognitive capacities which are observed in nature across species. Furthermore, an interpretation on the efficiency of brain's computations is also provided. These theoretical results and their implications against modern theories of intelligence are shown to be consistent with the formulated hypothesis.


Subject(s)
Biological Evolution , Brain/physiology , Intelligence/physiology , Neural Networks, Computer , Animals , Dolphins , Elephants , Hominidae , Humans
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(2 Pt 2): 026107, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16605398

ABSTRACT

The conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity are investigated. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. An analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region where this effect is observed, although critical storage and information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network.


Subject(s)
Algorithms , Models, Biological , Nerve Net/physiology , Neural Networks, Computer , Animals , Computer Simulation , Feedback/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...