Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 133
Filter
1.
Anal Chem ; 96(24): 9859-9865, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38830623

ABSTRACT

In drug discovery, ligands are sought that modulate the (mal-)function of medicinally relevant target proteins. In order to develop new drugs, typically a multitude of potential ligands are initially screened for binding and subsequently characterized for their affinity. Nuclear magnetic resonance (NMR) is a well-established and highly sensitive technology for characterizing such interactions. However, it has limited throughput, because only one sample can be measured at a time. In contrast, magnetic resonance imaging (MRI) is inherently parallel and MR parameters can conveniently be encoded in its images, potentially offering increased sample throughput. We explore this application using a custom-built 9-fold sample holder and a 19F-MRI coil. With this setup, we show that ligand binding can be detected by T2-weighted 19F-MRI using 4-(trifluoromethyl)benzamidine (TFBA) and trypsin as the reporter ligand and target protein, respectively. Furthermore, we demonstrate that the affinity of nonfluorinated ligands can be determined in a competition format by monitoring the dose-dependent displacement of TFBA. By comparing 19F-T2-weighted MR images of TFBA in the presence of different benzamidine (BA) concentrations-all recorded in parallel-the affinity of BA could be derived. Therefore, this approach promises parallel characterization of protein-ligand interactions and increased throughput of biochemical assays, with potential for increased sensitivity when combined with hyperpolarization techniques.


Subject(s)
Benzamidines , Ligands , Benzamidines/chemistry , Protein Binding , Trypsin/metabolism , Trypsin/chemistry , Magnetic Resonance Imaging/methods , Proteins/chemistry , Proteins/metabolism
2.
Sci Rep ; 14(1): 11815, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783051

ABSTRACT

Electron paramagnetic resonance (EPR) spectroscopy stands out as a powerful analytical technique with extensive applications in the fields of biology, chemistry, physics, and material sciences. It proves invaluable for investigating the molecular structure and reaction mechanisms of substances containing unpaired electrons, such as metal complexes, organic and inorganic radicals, and intermediate states in chemical reactions. However, despite their remarkable capabilities, EPR systems face significant limitations in terms of sample throughput, as current commercial systems only target the analysis of one sample at a time. Here we introduce a novel scheme for conducting ultra-high frequency continuous-wave EPR (CW EPR) targeting the EPR spectroscopy of multiple microliter volume samples in parallel. Our proof-of-principle prototype involves two decoupled detection cells equipped with high qualty factor Q = 104 solenoidal coils tuned to 488 and 589 MHz, ensuring a significant frequency gap for effective radio frequency (RF) decoupling between the channels. To further enhance electromagnetic decoupling, an orthogonal alignment of the coils was adopted. The paper further presents an innovative radiofrequency circuit concept that utilizes a single physical RF channel to simultaneously conduct parallel EPR on up to eight cells. Parallel EPR experiments on two BDPA samples, each with a sample volume of 18.3 µL, registered signal-to-noise ratios of 255 and 252 for the two EPR measurement cells, with no observable coupling. The showcased prototype, built using cost-effective commercially available fabrication technology, is readily scalable and represents an initial step with promising potential for advancing sample screening with high-throughput parallel EPR.

3.
Cryst Growth Des ; 24(9): 3589-3594, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38708370

ABSTRACT

Laser-induced crystallization is a novel alternative to classical methods for crystallizing organic molecules but requires a judicious choice of experimental parameters for the onset of crystallization to be predictable. This study investigated the impact of the laser repetition rate on the time delay from the start of the pulsed laser illumination to the initiation of crystallization, the so-called induction time. A supersaturated urea solution was irradiated with near-infrared (λ = 1030 nm) laser pulses of pulse duration τ = 5 ps at a pulse energy of approximately E = 340 µJ while varying the repetition rate from 10 to 20,000 Hz. The optimal rate discovered ranged from 500 Hz to 1 kHz, quantified by the measured induction time (median 2-5 s) and the mean probability of inducing a successful crystallization event (5 × 10-2%). For higher repetition rates (5-20 kHz), the mean probability dropped to 3 × 10-3%. The reduced efficiency at high repetition rates is likely due to an interaction between an existing thermocavitation bubble and subsequent pulses. These results suggest that an optimized pulse repetition rate can be a means to gain further control over the laser-induced crystallization process.

4.
Microsyst Nanoeng ; 10: 29, 2024.
Article in English | MEDLINE | ID: mdl-38434587

ABSTRACT

Dielectrophoresis is a powerful and well-established technique that allows label-free, non-invasive manipulation of cells and particles by leveraging their electrical properties. The practical implementation of the associated electronics and user interface in a biology laboratory, however, requires an engineering background, thus hindering the broader adoption of the technique. In order to address these challenges and to bridge the gap between biologists and the engineering skills required for the implementation of DEP platforms, we report here a custom-built, compact, universal electronic platform termed ADEPT (adaptable dielectrophoresis embedded platform tool) for use with a simple microfluidic chip containing six microelectrodes. The versatility of the open-source platform is ensured by a custom-developed graphical user interface that permits simple reconfiguration of the control signals to address a wide-range of specific applications: (i) precision positioning of the single bacterium/cell/particle in the micrometer range; (ii) viability-based separation by achieving a 94% efficiency in separating live and dead yeast; (iii) phenotype-based separation by achieving a 96% efficiency in separating yeast and Bacillus subtilis; (iv) cell-cell interactions by steering a phagocytosis process where a granulocyte engulfs E. coli RGB-S bacterium. Together, the set of experiments and the platform form a complete basis for a wide range of possible applications addressing various biological questions exploiting the plug-and-play design and the intuitive GUI of ADEPT.

5.
Sci Rep ; 14(1): 1645, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238376

ABSTRACT

A Lenz lens is an electrically passive conductive element that, when placed in a time-varying magnetic field, acts as a magnetic flux concentrator or a magnetic lens. In the realm of nuclear magnetic resonance (NMR), Lenz lenses have been exploited as electrically passive metallic radiofrequency interposers placed between a sample and a tuned or untuned NMR detector in order to focus the [Formula: see text]-field of the detector onto a smaller sample space. Here we explore a novel embodiment of the Lenz lens, which acts as a non-resonant stripline interposer, i.e., the [Formula: see text]-field acts along the longitudinal volume of a sample container, such as a capillary or other microfluidic channel that is coincident with the axis of the stripline. The almost vanishing self-resonance of the stripline Lenz lens, at frequencies relevant for NMR, leads to a desirable [Formula: see text]-field amplitude that is nearly perfectly uniform across the sample and hence lacking a characteristic sinusoidal modal shape. The action of Lenz' law ensures that no stray [Formula: see text]-field is found outside of the stripline's active volume. Because the stripline Lenz lens does not rely on its own geometry to achieve resonance, its frequency response is thus widely broadband for field enhancements up to a factor of 11, with only the external driving resonator properties governing the overall resonant behaviour. We explore the use of the stripline Lenz lens with a sub-nanolitre sample volume, readily detecting 4 isotopes with resonances ranging from 125.76 to 500 MHz. The concept holds potential for the NMR study of thin films, small biological samples, as well as the in situ study of battery materials.

6.
Anal Chim Acta ; 1288: 342159, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38220291

ABSTRACT

BACKGROUND: Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks. RESULTS: Based on dissolvable film valves, we present two technologies. The first, based on recently introduced pulse-actuated dissolvable film valves, is a centrifugal disc which, depending on how it is loaded, is configured to perform either six sequential reagent releases through one reaction chamber or three sequential reagent releases through two reaction chambers. In the second approach, we use the previously introduced electronic Lab-on-a-Disc (eLoaD) wireless valve array, which can actuate up to 128 centrifugo-pneumatic dissolvable film valves in a pre-defined sequence. In this approach we present a disc which can deliver any one of 8 reagent washes to any one of four reaction chambers. We use identical discs to demonstrate the first four sequential washes through two reaction chambers and then two sequential washes through four reaction chambers. SIGNIFICANCE: These programmable fluidic networks have the potential to allow a single disc architecture to be applied to multiple different assay types and so can offer a lower-cost and more integrated alternative to the standard combination of micro-titre plate and liquid handling robot. Indeed, it may even be possible to conduct multiple different assays concurrently. This can have the effect of reducing manufacturing costs and streamlining supply-chains and so results in a more accessible diagnostic platform.

7.
Trends Biotechnol ; 42(1): 5-9, 2024 01.
Article in English | MEDLINE | ID: mdl-37798144

ABSTRACT

Engineered living materials (ELMs) combine living and non-living entities. Their associated ethical concerns must be addressed to promote safety, promote sustainability, and regulate societal impacts. This article identifies key ethical and safety issues by reflecting on fundamental ethical principles. It further discusses a future ethical roadmap for sustainable research in ELMs.

8.
Adv Healthc Mater ; 13(9): e2303485, 2024 04.
Article in English | MEDLINE | ID: mdl-38150609

ABSTRACT

The integration of additive manufacturing technologies with the pyrolysis of polymeric precursors enables the design-controlled fabrication of architected 3D pyrolytic carbon (PyC) structures with complex architectural details. Despite great promise, their use in cellular interaction remains unexplored. This study pioneers the utilization of microarchitected 3D PyC structures as biocompatible scaffolds for the colonization of muscle cells in a 3D environment. PyC scaffolds are fabricated using micro-stereolithography, followed by pyrolysis. Furthermore, an innovative design strategy using revolute joints is employed to obtain novel, compliant structures of architected PyC. The pyrolysis process results in a pyrolysis temperature- and design-geometry-dependent shrinkage of up to 73%, enabling the geometrical features of microarchitected compatible with skeletal muscle cells. The stiffness of architected PyC varies with the pyrolysis temperature, with the highest value of 29.57 ± 0.78 GPa for 900 °C. The PyC scaffolds exhibit excellent biocompatibility and yield 3D cell colonization while culturing skeletal muscle C2C12 cells. They further induce good actin fiber alignment along the compliant PyC construction. However, no conclusive myogenic differentiation is observed here. Nevertheless, these results are highly promising for architected PyC scaffolds as multifunctional tissue implants and encourage more investigations in employing compliant architected PyC structures for high-performance tissue engineering applications.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Carbon , Muscle Cells , Printing, Three-Dimensional
9.
Sci Rep ; 13(1): 17983, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863971

ABSTRACT

Rapid drug development requires a high throughput screening technology. NMR could benefit from parallel detection but is hampered by technical obstacles. Detection sites must be magnetically shimmed to ppb uniformity, which for parallel detection is precluded by commercial shimming technology. Here we show that, by centering a separate shim system over each detector and employing deep learning to cope with overlapping non-orthogonal shimming fields, parallel detectors can be rapidly calibrated. Our implementation also reports the smallest NMR stripline detectors to date, based on an origami technique, facilitating further upscaling in the number of detection sites within the magnet bore.

10.
Chemphyschem ; 24(14): e202300420, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37462456

ABSTRACT

The front cover artwork is provided by Dr. Lehmkuhl's group at the Karlsruhe Institute of Technology. The image shows continuous NMR signals complemented by a simulated bifurcation diagram of a nonlinear RASER system. Read the full text of the Research Article at 10.1002/cphc.202300204.

11.
J Colloid Interface Sci ; 652(Pt A): 692-704, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37453873

ABSTRACT

With the current upsurge in hydrogen economies all over the world, an increased demand for improved chemiresistive H2 sensors that are highly responsive and fast acting when exposed to gases is expected. Owing to safety concerns about explosive and highly flammable H2 gas, it is important to develop resistive sensors that can detect the leakage of H2 gas swiftly and selectively. Currently, interest in metal-organic frameworks (MOFs) for gas-sensor applications is increasing due to their open-metal sites, large surface area, and unique surface morphologies. In this research, a highly selective and sensitive H2-sensor was established based on graphitic carbon (GC) anchored spherical Pd@PdO core-shells over γ-Fe2O3 microcube (Pd@PdO/γ-Fe2O3@GC which is termed as S3) heterostructure materials. The combined solvothermal followed by controlled calcination-assisted S3 exhibited a specific morphology with the highest surface area of 79.12 m2 g-1, resulting in fast response and recovery times (21 and 29 s, respectively), and excellent sensing performance (ΔR/R0∼ 96.2 ± 1.5), outstanding long-term stability, and a 100 ppb detection limit when detecting H2-gas at room temperature (mainly in very humid surroundings). This result proves that adsorption sites provided by S3 can promote surface reactions (adsorption and desorption) for ultrasensitive and selective H2gas sensors.

12.
J Magn Reson ; 353: 107517, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37418779

ABSTRACT

We present a compact tuned magnetic resonance detector that merges the conductor topology of a butterfly coil with that of a stripline, thereby increasing the magnetic field intensity B1 per unit current, which increases the detection signal-to-noise ratio for mass-limited samples by a factor of 2. The s-parameter measurements further reveal improved radiofrequency shielding through the suppression of B1 outside the coil when operated within an array of similar detectors. Simulations additionally show a sharper B1 fall-off for the butterfly stripline outside the sensitive sample region. Our design is compatible with 2D planar manufacturing procedures, such as printed circuit board technology, and surface micromachining.

13.
Sci Rep ; 13(1): 9624, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37369747

ABSTRACT

In grating-based X-ray Talbot interferometry, the wave nature of X-ray radiation is exploited to generate phase contrast images of objects that do not generate sufficient contrast in conventional X-ray imaging relying on X-ray absorption. The phase sensitivity of this interferometric technique is proportional to the interferometer length and inversely proportional to the period of gratings. However, the limited spatial coherency of X-rays limits the maximum interferometer length, and the ability to obtain smaller-period gratings is limited by the manufacturing process. Here, we propose a new optical configuration that employs a combination of a converging parabolic micro-lens array and a diverging micro-lens array, instead of a binary phase grating. Without changing the grating period or the interferometer length, the phase signal is enhanced because the beam deflection by a sample is amplified through the array of converging-diverging micro-lens pairs. We demonstrate that the differential phase signal detected by our proposed set-up is twice that of a Talbot interferometer, using the same binary absorption grating, and with the same overall inter-grating distance.

14.
Chemphyschem ; 24(14): e202300204, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37183171

ABSTRACT

A RASER (Radio Amplification by Stimulated Emission of Radiation) facilitates the study of nonlinear phenomena, as well as the determination of NMR parameters with high precision. To achieve maximum sensitivity in the desired operating mode, it is crucial to control the RASER over long periods of time. So far, this was only possible at ultra-low magnetic fields. Here, we introduce a way to control the operating regime of a RASER at a magnetic field of 1.45 T. We employ a continuous-flow RASER, pumped by PHIP (ParaHydrogen Induced Polarization). The hydrogenation of vinyl acetate (VA) with parahydrogen provides the required negative polarization on the methyl group of the product ethyl acetate (EA). The protons within the methyl group, separated by a 7 Hz J-coupling, are RASER active. This system demonstrates five RASER phenomena: inequivalent and equivalent amplitudes in the "normal NMR mode", period doublings, frequency combs, and chaos. The experiments match with simulations based on a theoretical model of two nonlinear-coupled RASER modes. We predict the RASER regime at set conditions and visualize the prediction in a bifurcation diagram.

15.
J Magn Reson ; 352: 107461, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37207467

ABSTRACT

Phase contrast velocimetry relies on bipolar gradients to establish a direct and linear relationship between the phase of the magnetic resonance signal, and the corresponding fluid motion. Despite its utility, several limitations and drawbacks have been reported, the most important being the extended echo time due to the encoding after the excitation. In this study, we elucidate a new approach based on optimal control theory that circumvents some of these disadvantages. An excitation pulse, termed FAUCET (flow analysis under controlled encoding transients), is designed to encode velocity into phase already during the radiofrequency excitation. As a result of concurrent excitation and flow encoding, and hence elimination of post-excitation flow encoding, FAUCET achieves a shorter echo time than the conventional method. This achievement is a matter of significance not only because it decreases the loss of signal due to spin-spin relaxation and B0 inhomogeneity, but also because a shorter echo time is always preferred in order to reduce the dimensionless dephasing parameter and the required residence time of the flowing sample in the detection coil. The method is able to establish a non-linear bijective relationship between phase and velocity, which can be employed to enhance the resolution over a specific range of velocities, for example along flow boundaries. A computational comparison between the phase contrast and optimal control methods reveals that the latter's encoding is more robust against remnant higher-order-moment terms of the Taylor expansion for faster voxels, such as acceleration, jerk, and snap.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Rheology/methods
16.
Opt Express ; 31(6): 10489-10499, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-37157594

ABSTRACT

Metalenses can achieve diffraction-limited focusing via localized phase modification of the incoming light beam. However, the current metalenses face to the restrictions on simultaneously achieving large diameter, large numerical aperture, broad working bandwidth and the structure manufacturability. Herein, we present a kind of metalenses composed of concentric nanorings that can address these restrictions using topology optimization approach. Compared to existing inverse design approaches, the computational cost of our optimization method is greatly reduced for large-size metalenses. With its design flexibility, the achieved metalens can work in the whole visible range with millimeter size and a numerical aperture of 0.8 without involving high-aspect ratio structures and large refractive index materials. Electron-beam resist PMMA with a low refractive index is directly used as the material of the metalens, enabling a much more simplified manufacturing process. Experimental results show that the imaging performance of the fabricated metalens has a resolution better than 600 nm corresponding to the measured FWHM of 745 nm.

17.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36838032

ABSTRACT

In recent years, topology optimization has proved itself to be state of the art in the design of mechanical structures. At the same time, energy harvesting has gained a lot of attention in research and industry. In this work, we present a novel topology optimization of a multi-resonant piezoelectric energy-harvester device. The goal is to develop a broadband design that can generate constant power output over a range of frequencies, thus enabling reliable operation under changing environmental conditions. To achieve this goal, topology optimization is implemented with a combined-objective function, which tackles both the frequency requirement and the power-output characteristic. The optimization suggests a promising design, with satisfactory frequency characteristics.

18.
Anal Chem ; 95(2): 1327-1334, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36576271

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is commonly employed in a wide range of metabolomic research. Unfortunately, due to its relatively low sensitivity, smaller samples become challenging to study by NMR. Cryoprobes can be used to increase sensitivity by cooling the coil and preamplifier, offering sensitivity improvements of ∼3 to 4x. Alternatively, microcoils can be used to increase mass sensitivity by improving sample filling and proximity, along with decreased electrical resistance. Unfortunately, combining the two approaches is not just technically challenging, but as the coil decreases, so does its thermal fingerprint, reducing the advantage of cryogenic cooling. Here, an alternative solution is proposed in the form of a Lenz lens inside a cryoprobe. Rather than replacing the detection coil, Lenz lenses allow the B1 field from a larger coil to be refocused onto a much smaller sample area. In turn, the stronger B1 field at the sample provides strong coupling to the cryocoil, improving the signal. By combining a 530 I.D. Lenz lens with a cryoprobe, sensitivity was further improved by 2.8x and 3.5x for 1H and 13C, respectively, over the cryoprobe alone for small samples. Additionally, the broadband nature of the Lenz lenses allowed multiple nuclei to be studied and heteronuclear two-dimensional (2D) NMR approaches to be employed. The sensitivity improvements and 2D capabilities are demonstrated on 430 nL of hemolymph and eight eggs (∼350 µm O.D.) from the model organismDaphnia magna. In summary, combining Lenz lenses with cryoprobes offers a relatively simple approach to boost sensitivity for tiny samples while retaining cryoprobe advantages.


Subject(s)
Lenses , Magnetic Resonance Imaging , Animals , Magnetic Resonance Spectroscopy/methods , Magnetic Resonance Imaging/methods , Cold Temperature , Environmental Monitoring
19.
Acta Biomater ; 155: 386-399, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36280031

ABSTRACT

Cyanobacteria respond to light stimulation, activating localised assembly of type IV pili for motility. The resulting phototactic response is highly dependent on the nature of the incoming light stimulus, and the final motility parameters depend on the surface properties. Conventionally, phototaxis studies are carried out on hydrogel surfaces, such as agarose, with surface properties that vary in time due to experimental conditions. This study considers five substrates, widely utilized in microfluidic technology, to identify the most suitable alternative for performing reliable and repeatable phototaxis assays. The surfaces are characterised via a contact angle goniometer to determine the surface energy, white light interferometry for roughness, zeta-potentials and AFM force distance curves for charge patterns, and XPS for surface composition. Cell motility assays showed 1.25 times increment on surfaces with a water contact angle of 80° compared to a reference glass surface. To prove that motility can be enhanced, polydimethylsiloxane (PDMS) surfaces were plasma treated to alter their surface wettability. The motility on the plasma-treated PDMS showed similar performance as for glass surfaces. In contrast, untreated PDMS surfaces displayed close to zero motility. We also describe the force interactions of cells with the test surfaces using DLVO (Derjaguin-Landau-Verwey-Overbeek) and XDLVO (extended DLVO) theories. The computed DLVO/XDLVO force-distance curves are compared with those obtained using atomic force microscopy. Our findings show that twitching motility on tested surfaces can be described mainly from adhesive forces and hydrophobicity/hydrophilicity surface properties. STATEMENT OF SIGNIFICANCE: The current article focuses on unravelling the potential Micro-Electro-Mechanical System (MEMS) compatible surfaces for studying phototactic twitching motility of cyanobacteria. This is the first exhaustive surface characterization study coupled with phototaxis experiments, to understand the forces contributing to twitching motility. The methods shown in this paper can be further extended to study other surfaces and also to other bacteria exhibiting twitching motility.


Subject(s)
Cyanobacteria , Phototaxis , Surface Properties , Wettability , Hydrophobic and Hydrophilic Interactions
20.
Biosensors (Basel) ; 12(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36354455

ABSTRACT

Glioblastoma multiforme is one of the most aggressive malignant primary brain tumors. To design effective treatment strategies, we need to better understand the behavior of glioma cells while maintaining their genetic and phenotypic stability. Here, we investigated the deformation and migration profile of U87 Glioma cells under the influence of dielectrophoretic forces. We fabricated a gold microelectrode array within a microfluidic channel and applied sinusoidal wave AC potential at 3 Vpp, ranging from 30 kHz to 10 MHz frequencies, to generate DEP forces. We followed the dielectrophoretic movement and deformation changes of 100 glioma cells at each frequency. We observed that the mean dielectrophoretic displacements of glioma cells were significantly different at varying frequencies with the maximum and minimum traveling distances of 13.22 µm and 1.37 µm, respectively. The dielectrophoretic deformation indexes of U87 glioma cells altered between 0.027-0.040. It was 0.036 in the absence of dielectrophoretic forces. This approach presents a rapid, robust, and sensitive characterization method for quantifying membrane deformation of glioma cells to determine the state of the cells or efficacy of administrated drugs.


Subject(s)
Glioma , Microfluidics , Humans , Electrophoresis/methods , Microelectrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...