Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 453(7199): 1220-3, 2008 Jun 26.
Article in English | MEDLINE | ID: mdl-18580946

ABSTRACT

The observation that one hemisphere of Mars is lower and has a thinner crust than the other (the 'martian hemispheric dichotomy') has been a puzzle for 30 years. The dichotomy may have arisen as a result of internal mechanisms such as convection. Alternatively, it may have been caused by one or several giant impacts, but quantitative tests of the impact hypothesis have not been published. Here we use a high-resolution, two-dimensional, axially symmetric hydrocode to model vertical impacts over a range of parameters appropriate to early Mars. We propose that the impact model, in addition to excavating a crustal cavity of the correct size, explains two other observations. First, crustal disruption at the impact antipode is probably responsible for the observed antipodal decline in magnetic field strength. Second, the impact-generated melt forming the northern lowlands crust is predicted to derive from a deep, depleted mantle source. This prediction is consistent with characteristics of martian shergottite meteorites and suggests a dichotomy formation time approximately 100 Myr after martian accretion, comparable to that of the Moon-forming impact on Earth.

2.
Icarus ; 146(2): 387-403, 2000 Aug.
Article in English | MEDLINE | ID: mdl-11543505

ABSTRACT

We present results from a number of 2D high-resolution hydrodynamical simulations of asteroids striking the atmosphere of Venus. These cover a wide range of impact parameters (velocity, size, and incidence angle), but the focus is on 2-3 km diameter asteroids, as these are responsible for most of the impact craters on Venus. Asteroids in this size range are disintegrated, ablated, and significantly decelerated by the atmosphere, yet they retain enough impetus to make large craters when they meet the surface. We find that smaller impactors (diameter <1-2 km) are better described by a "pancaking" model in which the impactor is compressed and distorted, while for larger impactors (>2-3 km) fragmentation by mechanical ablation is preferred. The pancaking model has been modified to take into account effects of hydrodynamical instabilities. The general observation that most larger impactors disintegrate by shedding fragments generated from hydrodynamic instabilities spurs us to develop a simple heuristic model of the mechanical ablation of fragments based on the growth rates of Rayleigh-Taylor instabilities. Although in principle the model has many free parameters, most of these have little effect provided that they are chosen reasonably. In practice the range of model behavior can be described with one free parameter. The resulting model reproduces the mass and momentum fluxes rather well, doing so with reasonable values of all physical parameters.


Subject(s)
Atmosphere , Computer Simulation , Minor Planets , Models, Theoretical , Venus , Deceleration , Exobiology , Extraterrestrial Environment , Geological Phenomena , Geology , Mechanics
SELECTION OF CITATIONS
SEARCH DETAIL
...