Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neurol Neurochir Pol ; 55(1): 52-58, 2021.
Article in English | MEDLINE | ID: mdl-33047785

ABSTRACT

AIM OF STUDY: To examine whether baseline characteristics, potential risk factors, clinical symptoms, radiological presentation, and long-term outcomes differ between internal carotid artery dissection (ICAD) and vertebral artery dissection (VAD). CLINICAL RATIONALE FOR STUDY: Cervical artery dissection (CeAD) is a major cause of cerebral ischaemia in young adults. Its clinical course is highly variable, resulting in challenges in making a proper diagnosis. METHODS: We performed a retrospective analysis of 31 patients (mean age 42.2 years) with CeAD (18 with ICAD, 13 with VAD) treated in our neurology department from 2008 to 2018. Appropriate imaging confirmed the diagnosis of CeAD. RESULTS: Patients with ICAD presented Horner syndrome significantly more often (44.4% vs 7.6%; p = 0.04). Patients with VAD more often had ischaemic events (ischaemic stroke, TIA or transient blindness) (84.6% vs 44.6%; p = 0.0032). Ischaemic stroke was more severe in patients with ICAD [(median NIHSS 6, interquartile range 4-12) vs VAD (median NIHSS 4, interquartile range 1.5-5.5), p = 0,03]. Occlusion occurred more often in patients with VAD (69.2% vs 22.2%; p = 0.013). Most patients had a favourable outcome (mRS 0-2). CONCLUSIONS AND CLINICAL IMPLICATIONS: In a series of patients with CeAD, we observed significant differences between VAD and ICAD in terms of clinical symptoms and radiological features.


Subject(s)
Brain Ischemia , Carotid Artery, Internal, Dissection , Stroke , Vertebral Artery Dissection , Adult , Brain Ischemia/diagnostic imaging , Brain Ischemia/epidemiology , Carotid Artery, Internal, Dissection/diagnostic imaging , Carotid Artery, Internal, Dissection/epidemiology , Humans , Prognosis , Retrospective Studies , Stroke/diagnostic imaging , Stroke/epidemiology , Vertebral Artery Dissection/diagnostic imaging , Vertebral Artery Dissection/epidemiology , Young Adult
2.
Stat Med ; 39(22): 2901-2920, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32478905

ABSTRACT

Human health is strongly associated with person's lifestyle and levels of physical activity. Therefore, characterization of daily human activity is an important task. Accelerometers have been used to obtain precise measurements of body acceleration. Wearable accelerometers collect data as a three-dimensional time series with frequencies up to 100 Hz. Using such accelerometry signal, we are able to classify different types of physical activity. In our work, we present a novel procedure for physical activity classification based on the raw accelerometry signal. Our proposal is based on the spherical representation of the data. We classify four activity types: resting, upper body activities (sitting), upper body activities (standing), and lower body activities. The classifier is constructed using decision trees with extracted features consisting of spherical coordinates summary statistics, moving averages of the radius and the angles, radius variance, and spherical variance. The classification accuracy of our method has been tested on data collected on a sample of 47 elderly individuals who performed a series of activities in laboratory settings. The achieved classification accuracy is over 90% when the subject-specific data are used and 84% when the group data are used. Main contributor to the classification accuracy is the angular part of the collected signal, especially spherical variance. To the best of our knowledge, spherical variance has never been previously used in the analysis of the raw accelerometry data. Its major advantage over other angular measures is its invariance to the accelerometer location shifts.


Subject(s)
Accelerometry , Algorithms , Aged , Exercise , Human Activities , Humans
3.
Life Sci ; 229: 149-156, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31100326

ABSTRACT

Matrix metalloproteinases (MMPs) are enzymes capable of degrading nearly all types of extracellular matrix. They perform a wide range of roles in physiological processes, which is the reason for their strict regulation by numerous mechanisms including natural tissue inhibitors of metalloproteinases (TIMP). Research only started to shed light on more troublesome aspects of MMPs function, like cancer progression, Alzheimer's disease, atherosclerosis, ageing. Moreover, their profound role in diabetes is being carefully investigated including one of its most debilitating complications - diabetic retinopathy (DR), the leading cause of acquired blindness worldwide. Traditional treatment of this condition seems to be only mildly satisfactory, which elicited substantial interest in the field of new therapeutic methods including MMP targeting. So far, significant roles of MMP-2 and MMP-9 in the development of retinopathy have been established, with special attention given to the process of blood-retinal barrier impairment. Further exploration revealed MMP-10 and MMP-14 involvement as well as changes in MMP/TIMP ratio. In this review, we provide insight into MMPs role in diabetic retinopathy with a clarification of various mechanisms regulating MMP activity in the light of the recent studies. We conclude with an overview of novel DR therapies targeting MMPs and point to the need of further examination of their usefulness in clinical setting, with an eye towards future research.


Subject(s)
Diabetic Retinopathy/drug therapy , Matrix Metalloproteinase Inhibitors/therapeutic use , Matrix Metalloproteinases/chemistry , Animals , Diabetic Retinopathy/enzymology , Diabetic Retinopathy/pathology , Humans
4.
Expert Opin Drug Discov ; 13(5): 459-472, 2018 05.
Article in English | MEDLINE | ID: mdl-29447015

ABSTRACT

INTRODUCTION: The discovery and domestication of biomolecules that respond to light has taken a light of its own, providing new molecular tools with incredible spatio-temporal resolution to manipulate cellular behavior. Areas covered: The authors herein analyze the current optogenetic tools in light of their current, and potential, uses in cancer drug discovery, biosafety and cancer biology. Expert opinion: The pipeline from drug discovery to the clinic is plagued with drawbacks, where most drugs fail in either efficacy or safety. These issues require the redesign of the pipeline and the development of more controllable/personalized therapies. Light is, aside from inexpensive, almost harmless if used appropriately, can be directed to single cells or organs with controllable penetration, and comes in a variety of wavelengths. Light-responsive systems can activate, inhibit or compensate cell signaling pathways or specific cellular events, allowing the specific control of the genome and epigenome, and modulate cell fate and transformation. These synthetic molecular tools have the potential to revolutionize drug discovery and cancer research.


Subject(s)
Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , Optogenetics/methods , Animals , Antineoplastic Agents/administration & dosage , Drug Discovery/methods , Humans , Neoplasms/genetics , Neoplasms/pathology , Precision Medicine/methods , Signal Transduction
5.
Front Chem ; 5: 12, 2017.
Article in English | MEDLINE | ID: mdl-28344971

ABSTRACT

In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...