Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Toxicol In Vitro ; 30(1 Pt B): 241-9, 2015 Dec 25.
Article in English | MEDLINE | ID: mdl-26528891

ABSTRACT

Chemical reactivity of acyl glucuronides (AGs) is believed to be involved in the toxicity of carboxylic acid-containing drugs. Both direct and immune-mediated toxicity have been suggested as possible mechanisms of toxicity; however, it remains unclear. In the present study, we performed assays of half-lives, peptide adducts, and immunostimulation to evaluate the potential risk of AGs of 21 drugs and analyzed the relationship to the toxic category. AGs of all withdrawn drugs tested in this study showed short half-lives and peptide adducts formation, but so did those of several safe drugs. In contrast, only AGs of withdrawn and warning drugs induced interleukin-8 (IL-8) in human peripheral blood mononuclear cells (hPBMCs). Using a DNA microarray assay, we found that zomepirac AG induced the mRNAs of 5 genes, including IL-8 in hPBMCs. In addition, withdrawn and warning drugs were distinguished from safe drugs by an integrated score of relative mRNA expression levels of 5 genes. The immunostimulation assay showed higher sensitivity, specificity, and accuracy compared with other methods. In preclinical drug development, the evaluation of the reactivity of AGs using half-lives and peptide adducts assays followed by the evaluation of immunostimulation by highly reactive AGs using hPBMCs can contribute to improved drug safety.


Subject(s)
Glucuronides/toxicity , Peptides/metabolism , Cells, Cultured , Glucuronides/pharmacokinetics , Half-Life , Humans , Immunization , Interleukin-8/genetics , RNA, Messenger/analysis
2.
Xenobiotica ; 45(6): 556-62, 2015.
Article in English | MEDLINE | ID: mdl-25539456

ABSTRACT

1. Raloxifene-6-glucuronide (R6G) is a substrate of rat multidrug resistance-associated protein 2 (Mrp2), a transporter responsible for biliary excretion of organic anions. 2. Pharmacokinetic modeling of R6G in Eisai hyperbilirubinemic rats (EHBRs), hereditary Mrp2-deficient rats, and wild-type Sprague-Dawley rats (SDRs) indicated that reduction in not only biliary excretion but also hepatic uptake of R6G influenced low clearance in EHBRs. 3. An integration plot study demonstrated that the hepatic uptake of R6G was 66% lower in EHBRs than that in SDRs. A reduction was observed for the other Mrp2 substrate Valsartan (95% lower) but not for estradiol-17ß-glucuronide (E217ßG). This variation may be associated with the difference in substrate specificity of transporters and/or inhibition of hepatic uptake of organic anions by endogenous substances such as bilirubin glucuronides. 4. In conclusion, incidental alteration of the hepatic uptake of organic anions should be considered as an explanation of their enhanced systemic exposure in EHBRs.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Glucuronates/pharmacokinetics , Liver/metabolism , Piperidines/pharmacokinetics , Valsartan/pharmacokinetics , ATP-Binding Cassette Transporters/genetics , Animals , Estradiol/analogs & derivatives , Estradiol/pharmacokinetics , Estradiol/pharmacology , Glucuronates/pharmacology , Hyperbilirubinemia/genetics , Hyperbilirubinemia/metabolism , Male , Piperidines/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Valsartan/pharmacology
3.
Bioorg Med Chem ; 20(19): 5705-19, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959556

ABSTRACT

Dipeptidyl peptidase IV (DPP-4) inhibition is suitable mechanism for once daily oral dosing regimen because of its low risk of hypoglycemia. We explored linked bicyclic heteroarylpiperazines substituted at the γ-position of the proline structure in the course of the investigation of l-prolylthiazolidines. The efforts led to the discovery of a highly potent, selective, long-lasting and orally active DPP-4 inhibitor, 3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine (8 g), which has a unique structure characterized by five consecutive rings. An X-ray co-crystal structure of 8 g in DPP-4 demonstrated that the key interaction between the phenyl ring on the pyrazole and the S(2) extensive subsite of DPP-4 not only boosted potency, but also increased selectivity. Compound 8 g, at 0.03 mg/kg or higher doses, significantly inhibited the increase of plasma glucose levels after an oral glucose load in Zucker fatty rats. Compound 8 g (teneligliptin) has been approved for the treatment of type 2 diabetes in Japan.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Thiazolidines/chemistry , Thiazolidines/therapeutic use , Animals , Blood Glucose/metabolism , Crystallography, X-Ray , Diabetes Mellitus, Type 2/enzymology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glucose Tolerance Test , Haplorhini , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Molecular Docking Simulation , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Wistar , Rats, Zucker , Thiazolidines/pharmacokinetics , Thiazolidines/pharmacology
4.
Drug Metab Dispos ; 39(9): 1495-502, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21646435

ABSTRACT

Raloxifene is extensively glucuronidated in humans, effectively reducing its oral bioavailability (2%). It was also reported to be glucuronidated in preclinical animals, but its effects on the oral bioavailability have not been fully elucidated. In the present study, raloxifene and its glucuronides in the portal and systemic blood were monitored in Gunn rats deficient in UDP-glucuronosyltransferase (UGT) 1A, Eisai hyperbilirubinemic rats (EHBRs), which hereditarily lack multidrug resistance-associated protein (MRP) 2, and wild-type rats after oral administration. The in vitro-in vivo correlation (IVIVC) of four UGT substrates (raloxifene, biochanin A, gemfibrozil, and mycophenolic acid) in rats was also evaluated. In Gunn rats, the product of fraction absorbed and intestinal availability and hepatic availability of raloxifene were 0.63 and 0.43, respectively; these values were twice those observed in wild-type Wistar rats, indicating that raloxifene was glucuronidated in both the liver and intestine. The ratio of glucuronides to unchanged drug in systemic blood was substantially higher in EHBRs (129-fold) than in the wild-type Sprague-Dawley rats (10-fold), suggesting the excretion of raloxifene glucuronides caused by MRP2. The IVIVC of the other UGT substrates in rats displayed a good relationship, but the oral clearance values of raloxifene and biochanin A, which were extensively glucuronidated by rat intestinal microsomes, were higher than the predicted clearances using rat liver microsomes, suggesting that intestinal metabolism may be a great contributor to the first-pass effect. Therefore, evaluation of intestinal and hepatic glucuronidation for new chemical entities is important to improve their pharmacokinetic profiles.


Subject(s)
Glucuronides/metabolism , Intestinal Mucosa/metabolism , Raloxifene Hydrochloride/pharmacokinetics , Animals , Biological Availability , Dogs , Drug Discovery/methods , Glucuronosyltransferase/metabolism , Liver/metabolism , Macaca fascicularis , Male , Microsomes/metabolism , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/metabolism , Rats , Rats, Gunn , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...