Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
eNeuro ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871455

ABSTRACT

In human adults, multiple cortical regions respond robustly to faces, including the occipital face area (OFA) and fusiform face area (FFA), implicated in face perception, and the superior temporal sulcus (STS) and medial prefrontal cortex (MPFC), implicated in higher level social functions. When in development does face selectivity arise in each of these regions? Here, we combined two awake infant functional magnetic resonance imaging (fMRI) datasets to create a sample size twice the size of previous reports (n = 65 infants, 2.6-9.6 months). Infants watched movies of faces, bodies, objects, and scenes while fMRI data were collected. Despite variable amounts of data from each infant, individual subject whole-brain activation maps revealed responses to faces compared to non-face visual categories in the approximate location of OFA, FFA, STS, and MPFC. To determine the strength and nature of face selectivity in these regions, we used cross-validated functional region of interest (fROI) analyses. Across this larger sample size, face responses in OFA, FFA, STS, and MPFC were significantly greater than responses to bodies, objects, and scenes. Even the youngest infants (2-5 months) showed significantly face-selective responses in FFA, STS, and MPFC, but not OFA. These results demonstrate that face selectivity is present in multiple cortical regions within months of birth, providing powerful constraints on theories of cortical development.Significance Statement Social cognition often begins with face perception. In adults, several cortical regions respond robustly to faces, yet little is known about when and how these regions first arise in development. To test whether face selectivity changes in the first year of life, we combined two datasets, doubling the sample size relative to previous reports. In the approximate location of the fusiform face area (FFA), superior temporal sulcus (STS), and medial prefrontal cortex (MPFC) but not occipital face area (OFA), face selectivity was present in the youngest group. These findings demonstrate that face-selective responses are present across multiple lobes of the brain very early in life.

2.
J Neurophysiol ; 131(6): 1083-1100, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38505898

ABSTRACT

The striatum receives projections from multiple regions of the cerebral cortex consistent with the role of the basal ganglia in diverse motor, affective, and cognitive functions. Within the striatum, the caudate receives projections from association cortex, including multiple distinct regions of prefrontal cortex. Building on recent insights about the details of how juxtaposed cortical networks are specialized for distinct aspects of higher-order cognition, we revisited caudate organization using within-individual precision neuroimaging initially in two intensively scanned individuals (each scanned 31 times). Results revealed that the caudate has side-by-side regions that are coupled to at least five distinct distributed association networks, paralleling the organization observed in the cerebral cortex. We refer to these spatial groupings of regions as striatal association megaclusters. Correlation maps from closely juxtaposed seed regions placed within the megaclusters recapitulated the five distinct cortical networks, including their multiple spatially distributed regions. Striatal association megaclusters were explored in 15 additional participants (each scanned at least 8 times), finding that their presence generalizes to new participants. Analysis of the laterality of the regions within the megaclusters further revealed that they possess asymmetries paralleling their cortical counterparts. For example, caudate regions linked to the language network were left lateralized. These results extend the general notion of parallel specialized basal ganglia circuits with the additional discovery that, even within the caudate, there is fine-grained separation of multiple distinct higher-order networks that reflects the organization and lateralization found in the cerebral cortex.NEW & NOTEWORTHY An individualized precision neuroimaging approach reveals juxtaposed zones of the caudate that are coupled with five distinct networks in association cortex. The organization of these caudate zones recapitulates organization observed in the cerebral cortex and extends the notion of specialized basal ganglia circuits.


Subject(s)
Caudate Nucleus , Humans , Male , Adult , Female , Caudate Nucleus/physiology , Caudate Nucleus/diagnostic imaging , Corpus Striatum/physiology , Corpus Striatum/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Magnetic Resonance Imaging , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Young Adult , Nerve Net/physiology , Nerve Net/diagnostic imaging , Middle Aged
3.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873093

ABSTRACT

The striatum receives projections from multiple regions of the cerebral cortex consistent with its role in diverse motor, affective, and cognitive functions. Supporting cognitive functions, the caudate receives projections from cortical association regions. Building on recent insights about the details of how multiple cortical networks are specialized for distinct aspects of higher-order cognition, we revisited caudate organization using within-individual precision neuroimaging (n=2, each participant scanned 31 times). Detailed analysis revealed that the caudate has side-by-side zones that are coupled to at least Give distinct distributed association networks, paralleling the specialization observed in the cerebral cortex. Examining correlation maps from closely juxtaposed seed regions in the caudate recapitulated the Give distinct cerebral networks including their multiple spatially distributed regions. These results extend the general notion of parallel specialized basal ganglia circuits, with the additional discovery that even within the caudate, there is Gine-grained separation of multiple distinct higher-order networks.

4.
Dev Sci ; 26(5): e13387, 2023 09.
Article in English | MEDLINE | ID: mdl-36951215

ABSTRACT

Prior studies have observed selective neural responses in the adult human auditory cortex to music and speech that cannot be explained by the differing lower-level acoustic properties of these stimuli. Does infant cortex exhibit similarly selective responses to music and speech shortly after birth? To answer this question, we attempted to collect functional magnetic resonance imaging (fMRI) data from 45 sleeping infants (2.0- to 11.9-weeks-old) while they listened to monophonic instrumental lullabies and infant-directed speech produced by a mother. To match acoustic variation between music and speech sounds we (1) recorded music from instruments that had a similar spectral range as female infant-directed speech, (2) used a novel excitation-matching algorithm to match the cochleagrams of music and speech stimuli, and (3) synthesized "model-matched" stimuli that were matched in spectrotemporal modulation statistics to (yet perceptually distinct from) music or speech. Of the 36 infants we collected usable data from, 19 had significant activations to sounds overall compared to scanner noise. From these infants, we observed a set of voxels in non-primary auditory cortex (NPAC) but not in Heschl's Gyrus that responded significantly more to music than to each of the other three stimulus types (but not significantly more strongly than to the background scanner noise). In contrast, our planned analyses did not reveal voxels in NPAC that responded more to speech than to model-matched speech, although other unplanned analyses did. These preliminary findings suggest that music selectivity arises within the first month of life. A video abstract of this article can be viewed at https://youtu.be/c8IGFvzxudk. RESEARCH HIGHLIGHTS: Responses to music, speech, and control sounds matched for the spectrotemporal modulation-statistics of each sound were measured from 2- to 11-week-old sleeping infants using fMRI. Auditory cortex was significantly activated by these stimuli in 19 out of 36 sleeping infants. Selective responses to music compared to the three other stimulus classes were found in non-primary auditory cortex but not in nearby Heschl's Gyrus. Selective responses to speech were not observed in planned analyses but were observed in unplanned, exploratory analyses.


Subject(s)
Auditory Cortex , Music , Speech Perception , Adult , Humans , Infant , Female , Acoustic Stimulation , Auditory Perception/physiology , Auditory Cortex/physiology , Noise , Magnetic Resonance Imaging , Speech Perception/physiology
5.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187706

ABSTRACT

The human cerebellum possesses multiple regions linked to cerebral association cortex. Here we mapped the cerebellum using precision functional MRI within individual participants (N=15), first estimating regions using connectivity and then prospectively testing functional properties using independent task data. Network estimates in all participants revealed a Crus I / II cerebellar megacluster of five higher-order association networks often with multiple, discontinuous regions for the same network. Seed regions placed within the megaclusters, including the disjointed regions, yielded spatially selective networks in the cerebral cortex. Compelling evidence for functional specialization within the cerebellar megaclusters emerged from the task responses. Reflecting functional distinctions found in the cerebrum, domain-flexible cerebellar regions involved in cognitive control dissociated from distinct domain-specialized regions with differential responses to language, social, and spatial / episodic task demands. These findings provide a clear demonstration that the cerebellum encompasses multiple zones dedicated to cognition, featuring juxtaposed regions specialized for distinct processing domains.

6.
Curr Biol ; 32(2): 265-274.e5, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34784506

ABSTRACT

Three of the most robust functional landmarks in the human brain are the selective responses to faces in the fusiform face area (FFA), scenes in the parahippocampal place area (PPA), and bodies in the extrastriate body area (EBA). Are the selective responses of these regions present early in development or do they require many years to develop? Prior evidence leaves this question unresolved. We designed a new 32-channel infant magnetic resonance imaging (MRI) coil and collected high-quality functional MRI (fMRI) data from infants (2-9 months of age) while they viewed stimuli from four conditions-faces, bodies, objects, and scenes. We find that infants have face-, scene-, and body-selective responses in the location of the adult FFA, PPA, and EBA, respectively, powerfully constraining accounts of cortical development.


Subject(s)
Pattern Recognition, Visual , Visual Pathways , Adult , Brain/physiology , Brain Mapping , Humans , Magnetic Resonance Imaging , Pattern Recognition, Visual/physiology , Photic Stimulation , Visual Pathways/physiology
7.
Magn Reson Med ; 86(3): 1773-1785, 2021 09.
Article in English | MEDLINE | ID: mdl-33829546

ABSTRACT

PURPOSE: Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware-related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32-channel array coil. METHODS: To allow imaging with a close-fitting head array coil for infants aged 1-18 months, an adjustable head coil concept was developed. The coil setup facilitates a half-seated scanning position to improve the infant's overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant's head. The constructed array coil was evaluated from phantom data using bench-level metrics, signal-to-noise ratio (SNR) performances, and accelerated imaging capabilities for both in-plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance. RESULTS: Phantom data showed a 2.7-fold SNR increase on average when compared with a commercially available 32-channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25-fold and 3-fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k-space reconstruction methods and SMS techniques. CONCLUSIONS: An infant-friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32-channel array coil is well-suited for fMRI acquisitions in awake infants.


Subject(s)
Magnetic Resonance Imaging , Wakefulness , Child , Humans , Infant , Neuroimaging , Phantoms, Imaging , Signal-To-Noise Ratio
8.
Trends Cogn Sci ; 22(9): 752-763, 2018 09.
Article in English | MEDLINE | ID: mdl-30041864

ABSTRACT

Recently acquired fMRI data from human and macaque infants provide novel insights into the origins of cortical networks specialized for perceiving faces. Data from both species converge: cortical regions responding preferentially to faces are present and spatially organized early in infancy, although fully selective face areas emerge much later. What explains the earliest cortical responses to faces? We review two proposed mechanisms: proto-organization for simple shapes in visual cortex, and an innate subcortical schematic face template. In addition, we propose a third mechanism: infants choose to look at faces to engage in positively valenced, contingent social interactions. Activity in medial prefrontal cortex during social interactions may, directly or indirectly, guide the organization of cortical face areas.


Subject(s)
Cerebral Cortex/growth & development , Cerebral Cortex/physiology , Facial Recognition/physiology , Social Behavior , Animals , Biological Evolution , Cerebral Cortex/diagnostic imaging , Humans , Macaca
SELECTION OF CITATIONS
SEARCH DETAIL
...