Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cells ; 38(8): 921-935, 2020 08.
Article in English | MEDLINE | ID: mdl-32346916

ABSTRACT

Spontaneous necrosis is a defining feature of glioblastomas (GBMs), the most malignant glioma. Despite its strong correlations with poor prognosis, it remains unclear whether necrosis could be a possible cause or mere consequence of glioma progression. Here we isolated a particular fraction of necrotic products spontaneously arising from glioma cells, morphologically and biochemically defined as autoschizis-like products (ALPs). When administered to granulocyte macrophage colony-stimulating factor (GM-CSF)-primed bone marrow-derived macrophage/dendritic cells (Mφ/DCs), ALPs were found to be specifically engulfed by Mφs expressing a tumor-associated macrophage (TAM) marker CD204. ALPs from glioma stem cells (GSCs) had higher activity for the TAM development than those from non-GSCs. Of note, expression of the Il12b gene encoding a common subunit of IL-12/23 was upregulated in ALPs-educated Mφs. Furthermore, IL-12 protein evidently enhanced the sphere-forming activity of GBM patient-derived cells, although interestingly IL-12 is generally recognized as an antitumoral M1-Mφ marker. Finally, in silico analysis of The Cancer Genome Atlas (TCGA) transcriptome data of primary and recurrent GBMs revealed that higher expression of these IL-12 family genes was well correlated with more infiltration of M1-type TAMs and closely associated with poorer prognosis in recurrent GBMs. Our results highlight a role of necrosis in GSC-driven self-beneficial niche construction and glioma progression, providing important clues for developing new therapeutic strategies against gliomas.


Subject(s)
Glioma/genetics , Goosecoid Protein/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Tumor-Associated Macrophages/metabolism , Animals , Female , Humans , Mice , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...