Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771944

ABSTRACT

Developing a conductive cellulose film without any metal compounds remains challenging, though in great demand. However, cellulose film prepared from bacterial cellulose (BC) powder without any metal compounds has poor tensile, physical, and electrical properties, thus limiting its application. Herein, this study aims to prepare and characterize an all-cellulose film from 2,2,6,6-Tetramethylpiperidin-1-yl)oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) powders without adding metal compounds and treated by ultrasonication. TOBC powders are sonicated with various powers of 250, 500, and 750 W for 20 min without any other substance. It was proved that increasing the ultrasonication power level resulted in a significant improvement in the properties of the film. The ultrasonication of 750 W increased tensile strength by 85%, toughness by 308%, light transmittance by 542%, and electrical conductivity by 174% compared to the nonsonicated film. A light-emitting diode connected to a power source through this sonicated film was much brighter than that connected via a nonsonicated film. For the first time, this study reports the preparation of electrically conductive, transparent, strong, and bendable pure TOBC films by increasing ultrasonic power for environmentally friendly electronic devices application.

2.
Heliyon ; 8(6): e09757, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35789872

ABSTRACT

The drying method requires an effort to store food for a longer time. Some drying processes experience technical and economic weaknesses, mainly related to low efficiency, high energy costs, and decreased product quality. Various drying models have been studied to determine the suitability of heat and mass transfer analysis at drying rates in an air dehumidification scheme using different materials, one of which is silica gel. In this case, the researchers examined the effects of humidity, temperature, and airflow rate on the constant drying rate and activation energy of water desorption in silica gel using a packed bed dryer that was modified with a refrigeration system. This modified system aims to reduce specific energy consumption (SEC). The results demonstrate that the constant rate of water desorption in silica gel and the increase in air humidity cause a decrease in the constant value of the water desorption rate in silica gel. However, increases in the temperature and airflow cause an increase in the value of the constant drying rate for water desorption in silica gel, as they cause capillary evaporation. Meanwhile, the activation energy of water desorption in silica gel increases with decreasing air flow rate and increasing inlet air humidity. The attractive force acting on the water molecules from the surface force field on the surrounding walls becomes stronger if the air flow rate decreases or the air humidity increases. From the results and analysis, it is shown that the activation energy of water desorption in silica gel with significant air humidity and low flow rate, of 0.013 kg/kg d.a. (450 lpm), is the highest at 35.16 kJ/mol, whereas in silica gel with air humidity of 0.007 kg/kg d.a. (750 lpm), it is the lowest at 22.92 kJ/mol. Meanwhile, the dryer air flow rate, higher heater temperature, and lower air humidity improve the performance of the bed dryer against its evaporation rate and decrease the Specific Energy Consumption (SEC) value. SEC is also greatly influenced by the use condenser 1, which provides heater power savings of up to 79.1%. Thus, the system is expected to be applied to commercial drying systems that can work at low drying temperatures to maintain drying products and obtain low energy consumption.

SELECTION OF CITATIONS
SEARCH DETAIL
...