Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1501: 117-127, 2017 Jun 09.
Article in English | MEDLINE | ID: mdl-28473200

ABSTRACT

Blood is a matrix with high potential for forensic investigations and human rescue. Its volatile signature can be used in search exercises to locate injured or deceased individuals. Little is known, however, about the volatile organic compound (VOC) profile of blood, except that it is complex and varies while blood ages. In the present study, we used thermal desorption (TD) and comprehensive two-dimensional gas chromatography (GCxGC) coupled to variable-energy electron ionization time-of-flight mass spectrometry (TOFMS) to monitor VOC signatures of human blood. A highly complex reference standard (Century Mix) containing 108 compounds of various chemical functionalities and several homologue series of compounds was used for the purpose of transposing our previously developed cryogenically modulated GCxGC-TOFMS methods into the use of a reverse fill/flush (RFF) flow modulator. The average peak width at half height was 340ms and the average tailing factor was 1.16. Light VOCs (down to C4) were effectively flow modulated and exhibited minimal breakthrough over a large dynamic range spanning four orders of magnitude. Mass spectrometric detection was performed using electron impact ionization (EI) carried out at 70eV and lower energies (12, 14, and 16eV). The use of variable-energy (ve) EI allowed mass spectra to be produced with less fragmentation and an increased presence of structurally significant ions and the molecular ion. This provided additional confidence in peak assignments, especially for closely eluting isomers often observed in the profiling of the headspace of blood. Variable-energy EI TD-GCxGC-TOFMS blood data sets were statistically processed using principal component analyses (PCA) and hierarchical cluster analyses (HCA). These techniques demonstrated that the effect of aging was greater than the inter-individual variation on the blood VOC profile. The combination of retention indices, low and high EI MS spectra served as a strong basis to gain more confidence in analytical identification by excluding identities proposed by mass spectral databases (70eV) for compounds contributing to the separation of blood of different ages.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/blood , Blood Chemical Analysis , Gas Chromatography-Mass Spectrometry/instrumentation , Humans , Isomerism , Principal Component Analysis , Volatile Organic Compounds/chemistry
2.
J Chromatogr A ; 1226: 96-102, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22056239

ABSTRACT

This work describes the development of a trace level (<1 ngL(-1)) analysis of haloanisoles in complex wine matrix. The suggested method involves sample preparation based on solid phase extraction, a clean-up to remove acidic compounds, concentration of the haloanisole fraction and large volume on-column injection into a multidimensional GC-MS system. Mass spectrometric detection in the selected ion mode allowed reliable quantification of 2,4,6-trichloroanisole (TCA) or 2,4,6-tribromoanisole (TBA), via their highly deuterated ([(2)H5]) isotopologues as internal standards (stable isotope dilution analysis; SIDA), which had prior been synthesized in house. The development of this new method had become necessary, as a one-dimensional HS-SPME-GC-ECD method, routinely applied for analysis of TCA in cork soaks, had to be extended for TeCA and TBA determination, but failed due to co-elutions within wine matrices. The newly developed SPE//MDGC-MS method provided detection limits well below olfactory thresholds of the analytes with 0.05 ngL(-1) (LOD), 0.19 ngL(-1) (LOQ) for TCA, 0.06 ngL(-1) (LOD), 0.21 ngL(-1) (LOQ) for TeCA, and 0.09 ngL(-1) (LOD), 0.34 ngL(-1) (LOQ) for TBA.


Subject(s)
Anisoles/analysis , Gas Chromatography-Mass Spectrometry/methods , Solid Phase Extraction/methods , Wine/analysis , Isotope Labeling , Limit of Detection , Reproducibility of Results , Sensitivity and Specificity
3.
J Chromatogr A ; 1217(43): 6769-77, 2010 Oct 22.
Article in English | MEDLINE | ID: mdl-20637469

ABSTRACT

The analysis of 3-alkyl-2-methoxypyrazines in Vitis vinifera grape must or wine at the low nanogram per liter level failed in several situations when applying a one-dimensional gas chromatographic analysis with mass spectrometric detection (GC-MS). Sample preparation methods such as headspace solid phase microextraction or solid phase extraction were convenient procedures, however lacking extraction selectivity for complex matrices. Analysis by comprehensive two-dimensional gas chromatography with mass spectrometric detection clearly demonstrated the potential for co-elution in such matrices and the risk for erroneous results when applying one-dimensional GC-MS. In one example, matrix problems would have been a challenge even for a comprehensive two-dimensional chromatographic approach with MS detection (GC×GC-MS). A solution to matrix problems was found by protonating the 3-alkyl-2-methoxypyrazines in acidic pH and sample clean-up using solid phase extraction with a mixed-mode polymeric cation-exchange sorbent. Quantification was performed by a stable isotope dilution assay, following analysis by on-line coupled high performance liquid chromatography with multidimensional gas chromatography and detection with mass spectrometry (on-line LC-MDGC-MS). This new approach allowed trace-level analysis of 3-alkyl-2-methoxypyrazines in grape musts and wines and is described for V. vinifera Sauvignon blanc, following 3-alkyl-2-methoxypyrazines concentrations during ripening and in the processed wines.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Isotope Labeling/methods , Pyrazines/analysis , Vitis/chemistry , Wine/analysis , Chromatography, Liquid/methods , Pyrazines/chemistry , Solid Phase Extraction/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...