Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 3443, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37301872

ABSTRACT

Four solution-processable, linear conjugated polymers of intrinsic porosity are synthesised and tested for gas phase carbon dioxide photoreduction. The polymers' photoreduction efficiency is investigated as a function of their porosity, optical properties, energy levels and photoluminescence. All polymers successfully form carbon monoxide as the main product, without the addition of metal co-catalysts. The best performing single component polymer yields a rate of 66 µmol h-1 m-2, which we attribute to the polymer exhibiting macroporosity and the longest exciton lifetimes. The addition of copper iodide, as a source of a copper co-catalyst in the polymers shows an increase in rate, with the best performing polymer achieving a rate of 175 µmol h-1 m-2. The polymers are active for over 100 h under operating conditions. This work shows the potential of processable polymers of intrinsic porosity for use in the gas phase photoreduction of carbon dioxide towards solar fuels.


Subject(s)
Carbon Dioxide , Polymers , Copper , Carbon Monoxide , Porosity
2.
Adv Mater ; 34(22): e2105007, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34714562

ABSTRACT

Organic semiconductor nanoparticles (NPs) composed of an electron donor/acceptor (D/A) semiconductor blend have recently emerged as an efficient class of hydrogen-evolution photocatalysts. It is demonstrated that using conjugated polymers functionalized with (oligo)ethylene glycol side chains in NP photocatalysts can greatly enhance their H2 -evolution efficiency compared to their nonglycolated analogues. The strategy is broadly applicable to a range of structurally diverse conjugated polymers. Transient spectroscopic studies show that glycolation facilitates charge generation even in the absence of a D/A heterojunction, and further suppresses both geminate and nongeminate charge recombination in D/A NPs. This results in a high yield of photogenerated charges with lifetimes long enough to efficiently drive ascorbic acid oxidation, which is correlated with greatly enhanced H2 -evolution rates in the glycolated NPs. Glycolation increases the relative permittivity of the semiconductors and facilitates water uptake. Together, these effects may increase the high-frequency relative permittivity inside the NPs sufficiently, to cause the observed suppression of exciton and charge recombination responsible for the high photocatalytic activities of the glycolated NPs.

3.
J Am Chem Soc ; 143(29): 11007-11018, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34192463

ABSTRACT

Novel p-type semiconducting polymers that can facilitate ion penetration, and operate in accumulation mode are much desired in bioelectronics. Glycol side chains have proven to be an efficient method to increase bulk electrochemical doping and optimize aqueous swelling. One early polymer which exemplifies these design approaches was p(g2T-TT), employing a bithiophene-co-thienothiophene backbone with glycol side chains in the 3,3' positions of the bithiophene repeat unit. In this paper, the analogous regioisomeric polymer, namely pgBTTT, was synthesized by relocating the glycol side chains position on the bithiophene unit of p(g2T-TT) from the 3,3' to the 4,4' positions and compared with the original p(g2T-TT). By changing the regio-positioning of the side chains, the planarizing effects of the S-O interactions were redistributed along the backbone, and the influence on the polymer's microstructure organization was investigated using grazing-incidence wide-angle X-ray scattering (GIWAXS) measurements. The newly designed pgBTTT exhibited lower backbone disorder, closer π-stacking, and higher scattering intensity in both the in-plane and out-of-plane GIWAXS measurements. The effect of the improved planarity of pgBTTT manifested as higher hole mobility (µ) of 3.44 ± 0.13 cm2 V-1 s-1. Scanning tunneling microscopy (STM) was in agreement with the GIWAXS measurements and demonstrated, for the first time, that glycol side chains can also facilitate intermolecular interdigitation analogous to that of pBTTT. Electrochemical quartz crystal microbalance with dissipation of energy (eQCM-D) measurements revealed that pgBTTT maintains a more rigid structure than p(g2T-TT) during doping, minimizing molecular packing disruption and maintaining higher hole mobility in operation mode.


Subject(s)
Electrochemical Techniques , Ethylenes/chemistry , Glycols/chemistry , Polymers/chemical synthesis , Thiophenes/chemical synthesis , Molecular Conformation , Polymers/chemistry , Stereoisomerism , Thiophenes/chemistry
5.
J Am Chem Soc ; 142(34): 14574-14587, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32786800

ABSTRACT

Semiconducting polymers are versatile materials for solar energy conversion and have gained popularity as photocatalysts for sunlight-driven hydrogen production. Organic polymers often contain residual metal impurities such as palladium (Pd) clusters that are formed during the polymerization reaction, and there is increasing evidence for a catalytic role of such metal clusters in polymer photocatalysts. Using transient and operando optical spectroscopy on nanoparticles of F8BT, P3HT, and the dibenzo[b,d]thiophene sulfone homopolymer P10, we demonstrate how differences in the time scale of electron transfer to Pd clusters translate into hydrogen evolution activity optima at different residual Pd concentrations. For F8BT nanoparticles with common Pd concentrations of >1000 ppm (>0.1 wt %), we find that residual Pd clusters quench photogenerated excitons via energy and electron transfer on the femto-nanosecond time scale, thus outcompeting reductive quenching. We spectroscopically identify reduced Pd clusters in our F8BT nanoparticles from the microsecond time scale onward and show that the predominant location of long-lived electrons gradually shifts to the F8BT polymer when the Pd content is lowered. While a low yield of long-lived electrons limits the hydrogen evolution activity of F8BT, P10 exhibits a substantially higher hydrogen evolution activity, which we demonstrate results from higher yields of long-lived electrons due to more efficient reductive quenching. Surprisingly, and despite the higher performance of P10, long-lived electrons reside on the P10 polymer rather than on the Pd clusters in P10 particles, even at very high Pd concentrations of 27000 ppm (2.7 wt %). In contrast, long-lived electrons in F8BT already reside on Pd clusters before the typical time scale of hydrogen evolution. This comparison shows that P10 exhibits efficient reductive quenching but slow electron transfer to residual Pd clusters, whereas the opposite is the case for F8BT. These findings suggest that the development of even more efficient polymer photocatalysts must target materials that combine both rapid reductive quenching and rapid charge transfer to a metal-based cocatalyst.

6.
Ecol Evol ; 10(14): 7929-7947, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32760575

ABSTRACT

The status of golden loaches (genus Sabanejewia) in the region of Central Europe and Balkans is still ambiguous. The greatest controversy is caused by species Sabanejewia balcanica and S. bulgarica. Both species are characterized by a wide spectrum of morphological variability and overlapping of distinguishing features, which then lead to difficulties in their determination. Previous phylogenetic studies aimed on the resolving of their taxonomic status did not include samples from their type localities and so led to a lack of their true distribution in this region. Therefore, the main aim of this study was to identify taxonomic status of golden loaches populations in the region of the middle Danube basin and adjacent areas on the model territory of Slovakia. For this purpose, we used novelty approach (morphological, molecular, and microhabitat) and we also included the missing samples from the type localities of both species. Based on mtDNA all the Slovakian samples reflected haplotype richness revealed on the type locality of S. bulgarica, although the genetic distances from other representatives of the genus Sabanejewia occurring are not significant. Within the morphology, we have revealed a great measure of variability in studied populations, which is largely caused by different habitat conditions and thus representing a phenotypic plasticity of these fish.

7.
Adv Mater ; 32(38): e2001763, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32754970

ABSTRACT

Organic semiconductors require an energetic offset in order to photogenerate free charge carriers efficiently, owing to their inability to effectively screen charges. This is vitally important in order to achieve high power conversion efficiencies in organic solar cells. Early heterojunction-based solar cells were limited to relatively modest efficiencies (<4%) owing to limitations such as poor exciton dissociation, limited photon harvesting, and high recombination losses. The development of the bulk heterojunction (BHJ) has significantly overcome these issues, resulting in dramatic improvements in organic photovoltaic performance, now exceeding 18% power conversion efficiencies. Here, the design and engineering strategies used to develop the optimal bulk heterojunction for solar-cell, photodetector, and photocatalytic applications are discussed. Additionally, the thermodynamic driving forces in the creation and stability of the bulk heterojunction are presented, along with underlying photophysics in these blends. Finally, new opportunities to apply the knowledge accrued from BHJ solar cells to generate free charges for use in promising new applications are discussed.

8.
Mol Ecol ; 29(16): 3038-3055, 2020 08.
Article in English | MEDLINE | ID: mdl-32627290

ABSTRACT

Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.


Subject(s)
Biological Evolution , Reproduction , Animals , Emotions , Genome , Models, Genetic , Mutation , Reproduction/genetics , Reproduction, Asexual/genetics
9.
Nat Mater ; 19(5): 559-565, 2020 May.
Article in English | MEDLINE | ID: mdl-32015530

ABSTRACT

Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core-shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h-1 g-1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux.

10.
J Fish Dis ; 42(12): 1677-1685, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31609003

ABSTRACT

An infection of zoonotic Clinostomum complanatum metacercariae with potential human transmission was recorded close to fish farms in the Tisa River Basin of Slovakia and Ukraine. The prevalence varied from 19.4% to 81.3%, and the intensity of infection varied from 7 to 41. The results of a generalized linear model predicted a positive trend for the Cobitis elongatoides host and a standard length and intensity of infection, with females having a higher number of parasites. However, no significant impact was found of the intensity of infection on Clark's condition of the host. The metacercariae were primarily located in the anterior part of the host's body. Our study also showed significant evidence that water velocity affects the number of C. complanatum metacercariae, regardless of the host's (Cobitis) microhabitat.


Subject(s)
Cypriniformes/parasitology , Fish Diseases/parasitology , Trematoda/pathogenicity , Trematode Infections/veterinary , Animals , Aquaculture , Female , Male , Metacercariae , Slovakia , Ukraine
11.
Nat Commun ; 8: 15218, 2017 05 11.
Article in English | MEDLINE | ID: mdl-28492235

ABSTRACT

Methylammonium lead halide perovskites are attracting intense interest as promising materials for next-generation solar cells, but serious issues related to long-term stability need to be addressed. Perovskite films based on CH3NH3PbI3 undergo rapid degradation when exposed to oxygen and light. Here, we report mechanistic insights into this oxygen-induced photodegradation from a range of experimental and computational techniques. We find fast oxygen diffusion into CH3NH3PbI3 films is accompanied by photo-induced formation of highly reactive superoxide species. Perovskite films composed of small crystallites show higher yields of superoxide and lower stability. Ab initio simulations indicate that iodide vacancies are the preferred sites in mediating the photo-induced formation of superoxide species from oxygen. Thin-film passivation with iodide salts is shown to enhance film and device stability. The understanding of degradation phenomena gained from this study is important for the future design and optimization of stable perovskite solar cells.

12.
Mol Phylogenet Evol ; 94(Pt B): 479-491, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26522609

ABSTRACT

The phylogenetic relationships and taxonomy of the spirlins in the genus Alburnoides are examined by comparative sequencing analysis of mitochondrial and nuclear markers. Molecular analyses revealed 17 Eurasian lineages divided into two main clades, termed the Ponto-Caspian and European in accordance with the lineage distribution. The indel diagnostics of ß-actin and S7 markers and translation of cyt b to the amino acid chain were evaluated as a reliable identifying tool for most of the recognised lineages. Lineage richness is closely connected with the existence of known glacial refugia in most cases. The underestimation of species richness in the genus Alburnoides is confirmed: the genetic analyses support the validity of 11 morphologically accepted species; apart from them, four phylogenetic lineages requiring descriptions as separate species were revealed. The distribution area of the nominotypical species A. bipunctatus s. stricto is newly defined. Two diverging phylogenetic lineages, A. ohridanus, and A. prespensis complex, were observed in the Southeast Adriatic Freshwater Ecoregion, confirmed as a hotspot of endemic biodiversity. A. ohridanus demonstrates high divergence from the A. prespensis complex, represented by three similar mitochondrial lineages with the same nuclear haplotypes and sympatric occurrence. The range restricted endemism was confirmed for at least seven species. The Albanian river systems, as well as the wider Ponto-Caspian basin exhibit complications among definite species delineations and gaps in understanding of microevolutionary processes; these areas require further investigations.


Subject(s)
Cyprinidae/classification , Animals , Biodiversity , Cyprinidae/genetics , DNA, Mitochondrial , Haplotypes , Phylogeny
13.
Mol Phylogenet Evol ; 47(3): 1061-75, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18434206

ABSTRACT

The phylogenetic relationships among gudgeons that represent most nominal taxa within Gobio gobio sensu lato were examined by mitochondrial and nuclear genome sequencing. The molecular analyses confirmed the separate generic status of Gobio as a monophyletic group and revealed 15 Eurasian lineages divided into two main clades, the Northern European and the Ponto-Caspian. The validity of eleven nominal taxa as distinct species was confirmed, gudgeons from the Volga River basin were described as a new species G. volgensis, and three revealed phylogenetic lineages were submitted for a comprehensive revision as "species-in-waiting". The species G. gobio showed a wide range extending from the British Isles to the Black Sea coast and overlapped the areas of several other species. Four pure lineages were detected in the middle Danube River basin. The Crimean Peninsula was found to be a region with the occurrence of individuals of hybrid origin. This region will require special investigation to define species participating in hybridization events, and to establish further steps for the conservation of endemic native gudgeon species. A simple diagnostic method, based on different lengths of the PCR products, called "S7indel diagnostics" is presented for further taxonomic investigations in the genus Gobio.


Subject(s)
Cyprinidae/classification , Cyprinidae/genetics , Evolution, Molecular , Phylogeny , Animals , Base Sequence , Bayes Theorem , Consensus Sequence , Fish Proteins/genetics , Genetic Markers , Geography , Haplotypes , Introns/genetics , Molecular Sequence Data , Rivers , Sequence Alignment , Sequence Analysis, DNA
14.
Folia Biol (Krakow) ; 51 Suppl: 61-5, 2003.
Article in English | MEDLINE | ID: mdl-15303342

ABSTRACT

This study identifies of populations of the genus Cobitis from the Slovakian Tisza drainage area, using karyotype, enzyme electrophoresis and flow cytometry. Pure diploid populations of Cobitis elongatoides were found in drainage basins of the Hornád, Slaná and Bodva rivers (5 populations). Species identifity was proven by analysis of genome and allelic composition. A large number of males was in these populations (42.5-60%). The drainage basin of the Bodrog river (3 populations), harbored so-called hybrid diploid-polyploid complexes with basic composition C. 2 elongatoides x 1 tanaitica. If diploid specimens were found, they belonged to C. elongatoides. Apart from triploids, diploids were rarely found in the Ondava and Latorica rivers. In the Bodrog River, tetraploids (C. 3 elongatoides x 1 tanaitica were seldom found beside triploid and diploid individuals. The percentage of males in hybrid complexes was very low (up to 16.2 %).


Subject(s)
Cypriniformes/classification , Cypriniformes/genetics , Hybridization, Genetic , Ploidies , Animals , Electrophoresis , Enzymes/classification , Female , Flow Cytometry , Karyotyping , Male , Slovakia
SELECTION OF CITATIONS
SEARCH DETAIL
...