Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 20: 1020-1028, 2024.
Article in English | MEDLINE | ID: mdl-38711591

ABSTRACT

Diaryliodonium(III) salts are versatile reagents that exhibit a range of reactions, both in the presence and absence of metal catalysts. In this study, we developed efficient synthetic methods for the preparation of aryl(TMP)iodonium(III) carboxylates, by reaction of (diacetoxyiodo)arenes or iodosoarenes with 1,3,5-trimethoxybenzene in the presence of a diverse range of organocarboxylic acids. These reactions were conducted under mild conditions using the trimethoxyphenyl (TMP) group as an auxiliary, without the need for additives, excess reagents, or counterion exchange in further steps. These protocols are compatible with a wide range of substituents on (hetero)aryl iodine(III) compounds, including electron-rich, electron-poor, sterically congested, and acid-labile groups, as well as a broad range of aliphatic and aromatic carboxylic acids for the synthesis of diverse aryl(TMP)iodonium(III) carboxylates in high yields. This method allows for the hybridization of complex bioactive and fluorescent-labeled carboxylic acids with diaryliodonium(III) salts.

2.
Org Lett ; 24(10): 1924-1928, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35254085

ABSTRACT

High reactivity of trimethoxyphenyl (TMP)-iodonium(III) acetate for phenol O-arylation was achieved. It was first determined that the TMP ligand and acetate anion cooperatively enhance the electrophilic reactivity toward phenol oxygen atoms. The proposed method provides access to various diaryl ethers in significantly higher yields than the previously reported techniques. Various functional groups, including aliphatic alcohol, boronic ester, and sterically hindered groups, were tolerated during O-arylation, verifying the applicability of this ligand- and counterion-assisted strategy.

3.
Data Brief ; 25: 104063, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31211208

ABSTRACT

The data in this article are related to research article ''Efficient N-arylation of azole compounds utilizing selective aryl-transfer TMP-iodonium (III) reagents (Koseki et al., 2019). For the title compound, phenyl(2,4,6-trimethoxyphenyl)iodonium(III) acetate (Ph(TMP)IOAc), the single-crystal X-ray diffraction measurement together with NMR analysis, like also the method of synthesis and crystallization are presented. The X-ray structure analysis has revealed that the two types of geometries regarding the acetate anion attached to phenyl (TMP)iodonium (III) cation are found in the crystal states.

4.
Angew Chem Int Ed Engl ; 55(50): 15535-15538, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27860031

ABSTRACT

A simple and efficient synthesis of phenol biaryls by the cross-couplings of quinone monoacetals (QMAs) and phenols is reported. The Brønsted acid catalytic system in 1,1,1,3,3,3-hexafluoro-2-propanol was found to be particularly efficient for this transformation. This reaction can be extended to the synthesis of various phenol biaryls, including sterically hindered biaryls, with yields ranging from 58 to 90 % under mild reaction conditions and in a highly regiospecific manner.

5.
Org Biomol Chem ; 14(38): 8947-8951, 2016 Sep 26.
Article in English | MEDLINE | ID: mdl-27722732

ABSTRACT

Pyrrole-aryl derivatives are important due to their unique biological activities in medicinal chemistry. We now report a new oxidative biaryl coupling for pyrroles and indoles toward various arenes using a hypervalent iodine reagent and an appropriate stabilizer for pyrrolyl iodonium intermediates. The reactions readily provide a variety of desired coupling products in good yields.

6.
Chem Pharm Bull (Tokyo) ; 63(10): 819-24, 2015.
Article in English | MEDLINE | ID: mdl-26423039

ABSTRACT

The facile and clean oxidative coupling reaction of pyrroles with azoles has been achieved using the recyclable hypervalent iodine(III) reagents having adamantane structures. These iodine(III) reagents could be recovered from the reaction mixtures by a simple solid-liquid separation, i.e., filtration, for reuse.


Subject(s)
Azoles/chemical synthesis , Iodine/chemistry , Pyrroles/chemical synthesis , Adamantane/chemistry , Azoles/chemistry , Green Chemistry Technology , Indicators and Reagents , Oxidation-Reduction , Pyrroles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...