Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338690

ABSTRACT

Tafalgin (Taf) is a tetrapeptide opioid used in clinical practice in Russia as an analgesic drug for subcutaneous administration as a solution (4 mg/mL; concentration of 9 mM). We found that the acid-sensing ion channels (ASICs) are another molecular target for this molecule. ASICs are proton-gated sodium channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Using electrophysiological methods, we demonstrated that Taf could increase the integral current through heterologically expressed ASIC with half-maximal effective concentration values of 0.09 mM and 0.3 mM for rat and human ASIC3, respectively, and 1 mM for ASIC1a. The molecular mechanism of Taf action was shown to be binding to the channel in the resting state and slowing down the rate of desensitization. Taf did not compete for binding sites with both protons and ASIC3 antagonists, such as APETx2 and amiloride (Ami). Moreover, Taf and Ami together caused an unusual synergistic effect, which was manifested itself as the development of a pronounced second desensitizing component. Thus, the ability of Taf to act as a positive allosteric modulator of these channels could potentially cause promiscuous effects in clinical practice. This fact must be considered in patients' treatment.


Subject(s)
Acid Sensing Ion Channels , Analgesics, Opioid , Rats , Humans , Animals , Acid Sensing Ion Channels/metabolism , Analgesics, Opioid/pharmacology , Amiloride/pharmacology , Protons , Binding Sites
2.
Toxins (Basel) ; 15(5)2023 05 15.
Article in English | MEDLINE | ID: mdl-37235375

ABSTRACT

Acid-sensing ion channels (ASICs) have been known as sensors of a local pH change within both physiological and pathological conditions. ASIC-targeting peptide toxins could be potent molecular tools for ASIC-manipulating in vitro, and for pathology treatment in animal test studies. Two sea anemone toxins, native Hmg 1b-2 and recombinant Hmg 1b-4, both related to APETx-like peptides, inhibited the transient current component of human ASIC3-Δ20 expressed in Xenopus laevis oocytes, but only Hmg 1b-2 inhibited the rat ASIC3 transient current. The Hmg 1b-4 action on rASIC3 as a potentiator was confirmed once again. Both peptides are non-toxic molecules for rodents. In open field and elevated plus maze tests, Hmg 1b-2 had more of an excitatory effect and Hmg 1b-4 had more of an anxiolytic effect on mouse behavior. The analgesic activity of peptides was similar and comparable to diclofenac activity in an acid-induced muscle pain model. In models of acute local inflammation induced by λ-carrageenan or complete Freund's adjuvant, Hmg 1b-4 had more pronounced and statistically significant anti-inflammatory effects than Hmg 1b-2. It exceeded the effect of diclofenac and, at a dose of 0.1 mg/kg, reduced the volume of the paw almost to the initial volume. Our data highlight the importance of a comprehensive study of novel ASIC-targeting ligands, and in particular, peptide toxins, and present the slightly different biological activity of the two similar toxins.


Subject(s)
Anti-Anxiety Agents , HMGB3 Protein , Sea Anemones , Toxins, Biological , Rats , Mice , Humans , Animals , Anti-Anxiety Agents/pharmacology , Sea Anemones/chemistry , Diclofenac , HMGB2 Protein , Peptides/pharmacology , Analgesics/pharmacology , Analgesics/therapeutic use , Toxins, Biological/pharmacology , Transcription Factors , Rodentia , Anti-Inflammatory Agents/pharmacology
3.
Biomolecules ; 12(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421718

ABSTRACT

A novel peptide AnmTX Sco 9a-1 with the ß-hairpin fold was isolated from the swimming sea anemone Stomphia coccinea (Actinostolidae family). The peptide consists of 28 amino acid residues, including modified hydroxyproline residue, and its measured molecular mass is 2960 Da. The peptide was not toxic on mice; however, it stimulated their exploratory motivation and active search behavior, and demonstrated an anti-anxiety effect. AnmTX Sco 9a-1 at doses of 0.1 and 1 mg/kg reduced the volume of edema during 24 h better than the nonsteroidal anti-inflammatory drug, Diclofenac, at dose of 1 mg/kg in a model of acute local λ-carrageenan-induced inflammation. ELISA analysis of the animal's blood showed that peptide at a dose of 1 mg/kg reduced the content of tumor necrosis factor-α (TNF-α), a pro-inflammatory mediator responsible in the edema development, up to the level of TNF-α in the intact group. Besides, AnmTX Sco 9a-1 demonstrated a significant analgesic effect on acute pain sensitivity in the carrageenan-induced thermal hyperalgesia model at doses of 0.1 and 1 mg/kg. Activity of AnmTX Sco 9a-1 was shown not to be associated with modulation of nociceptive ASIC channels.


Subject(s)
Peptides , Sea Anemones , Animals , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Edema/chemically induced , Edema/drug therapy , Peptides/chemistry , Sea Anemones/chemistry , Tumor Necrosis Factor-alpha
4.
Toxins (Basel) ; 14(10)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36287966

ABSTRACT

The nicotinic acetylcholine receptors (nAChRs) are prototypical ligand-gated ion channels, provide cholinergic signaling, and are modulated by various venom toxins and drugs in addition to neurotransmitters. Here, four APETx-like toxins, including two new toxins, named Hmg 1b-2 Metox and Hmg 1b-5, were isolated from the sea anemone Heteractis magnifica and characterized as novel nAChR ligands and acid-sensing ion channel (ASIC) modulators. All peptides competed with radiolabeled α-bungarotoxin for binding to Torpedo californica muscle-type and human α7 nAChRs. Hmg 1b-2 potentiated acetylcholine-elicited current in human α7 receptors expressed in Xenopus laevis oocytes. Moreover, the multigene family coding APETx-like peptides library from H. magnifica was described and in silico surface electrostatic potentials of novel peptides were analyzed. To explain the 100% identity of some peptide isoforms between H. magnifica and H. crispa, 18S rRNA, COI, and ITS analysis were performed. It has been shown that the sea anemones previously identified by morphology as H. crispa belong to the species H. magnifica.


Subject(s)
Receptors, Nicotinic , Sea Anemones , Toxins, Biological , Animals , Humans , Sea Anemones/chemistry , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Bungarotoxins , Acid Sensing Ion Channels , Acetylcholine/metabolism , Ligands , RNA, Ribosomal, 18S/metabolism , Toxins, Biological/metabolism , Peptides/chemistry , Cholinergic Agents/metabolism
5.
Front Oncol ; 12: 904742, 2022.
Article in English | MEDLINE | ID: mdl-35837090

ABSTRACT

Lung cancer is one of the most common cancer types in the world. Despite existing treatment strategies, overall patient survival remains low and new targeted therapies are required. Acidification of the tumor microenvironment drives the growth and metastasis of many cancers. Acid sensors such as acid-sensing ion channels (ASICs) may become promising targets for lung cancer therapy. Previously, we showed that inhibition of the ASIC1 channels by a recombinant analogue of mambalgin-2 from Dendroaspis polylepis controls oncogenic processes in leukemia, glioma, and melanoma cells. Here, we studied the effects and molecular targets of mambalgin-2 in lung adenocarcinoma A549 and Lewis cells, lung transformed WI-38 fibroblasts, and lung normal HLF fibroblasts. We found that mambalgin-2 inhibits the growth and migration of A549, metastatic Lewis P29 cells, and WI-38 cells, but not of normal fibroblasts. A549, Lewis, and WI-38 cells expressed different ASIC and ENaC subunits, while normal fibroblasts did not at all. Mambalgin-2 induced G2/M cell cycle arrest and apoptosis in lung adenocarcinoma cells. In line, acidification-evoked inward currents were observed only in A549 and WI-38 cells. Gene knockdown showed that the anti-proliferative and anti-migratory activity of mambalgin-2 is dependent on the expression of ASIC1a, α-ENaC, and γ-ENaC. Using affinity extraction and immunoprecipitation, mambalgin-2 targeting of ASIC1a/α-ENaC/γ-ENaC heteromeric channels in A549 cells was shown. Electrophysiology studies in Xenopus oocytes revealed that mambalgin-2 inhibits the ASIC1a/α-ENaC/γ-ENaC channels with higher efficacy than the ASIC1a channels, pointing on the heteromeric channels as a primary target of the toxin in cancer cells. Finally, bioinformatics analysis showed that the increased expression of ASIC1 and γ-ENaC correlates with a worse survival prognosis for patients with lung adenocarcinoma. Thus, the ASIC1a/α-ENaC/γ-ENaC heterotrimer can be considered a marker of cell oncogenicity and its targeting is promising for the design of new selective cancer therapeutics.

6.
Biology (Basel) ; 11(2)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35205034

ABSTRACT

Human neuroblastoma SH-SY5Y is a prominent neurobiological tool used for studying neuropathophysiological processes. We investigated acid-sensing (ASIC) and transient receptor potential vanilloid-1 (TRPV1) and ankyrin-1 (TRPA1) ion channels present in untreated and differentiated neuroblastoma SH-SY5Y to propose a new means for their study in neuronal-like cells. Using a quantitative real-time PCR and a whole-cell patch-clamp technique, ion channel expression profiles, functionality, and the pharmacological actions of their ligands were characterized. A low-level expression of ASIC1a and ASIC2 was detected in untreated cells. The treatment with 10 µM of retinoic acid (RA) for 6 days resulted in neuronal differentiation that was accompanied by a remarkable increase in ASIC1a expression, while ASIC2 expression remained almost unaltered. In response to acid stimuli, differentiated cells showed prominent ASIC-like currents. Detailed kinetic and pharmacological characterization suggests that homomeric ASIC1a is a dominant isoform among the present ASIC channels. RA-treatment also reduced the expression of TRPV1 and TRPA1, and minor electrophysiological responses to their agonists were found in untreated cells. Neuroblastoma SH-SY5Y treated with RA can serve as a model system to study the effects of different ligands on native human ASIC1a in neuronal-like cells. This approach can improve the characterization of modulators for the development of new neuroprotective and analgesic drugs.

7.
Front Cell Dev Biol ; 9: 739391, 2021.
Article in English | MEDLINE | ID: mdl-34595181

ABSTRACT

Secreted Ly6/uPAR-related protein 1 (SLURP-1) is a secreted Ly6/uPAR protein that negatively modulates the nicotinic acetylcholine receptor of α7 type (α7-nAChR), participating in control of cancer cell growth. Previously we showed, that a recombinant analogue of human SLURP-1 (rSLURP-1) diminishes the lung adenocarcinoma A549 cell proliferation and abolishes the nicotine-induced growth stimulation. Here, using multiplex immunoassay, we demonstrated a decrease in PTEN and mammalian target of rapamycin (mTOR) kinase phosphorylation in A549 cells upon the rSLURP-1 treatment pointing on down-regulation of the PI3K/AKT/mTOR signaling pathway. Decreased phosphorylation of the platelet-derived growth factor receptor type ß (PDGFRß) and arrest of the A549 cell cycle in the S and G2/M phases without apoptosis induction was also observed. Using a scratch migration assay, inhibition of A549 cell migration under the rSLURP-1 treatment was found. Affinity extraction demonstrated that rSLURP-1 in A549 cells forms a complex not only with α7-nAChR, but also with PDGFRα and epidermal growth factor receptor (EGFR), which are known to be involved in regulation of cancer cell growth and migration and are able to form a heterodimer. Knock-down of the genes encoding α7-nAChR, PDGFRα, and EGFR confirmed the involvement of these receptors in the anti-migration effect of SLURP-1. Thus, SLURP-1 can target the α7-nAChR complexes with PDGFRα and EGFR in the membrane of epithelial cells. Using chimeric proteins with grafted SLURP-1 loops we demonstrated that loop I is the principal active site responsible for the SLURP-1 interaction with α7-nAChR and its antiproliferative effect. Synthetic peptide mimicking the loop I cyclized by a disulfide bond inhibited ACh-evoked current at α7-nAChR, as well as A549 cell proliferation and migration. This synthetic peptide represents a promising prototype of new antitumor drug with the properties close to that of the native SLURP-1 protein.

8.
Pharmaceuticals (Basel) ; 13(8)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722325

ABSTRACT

Among acid-sensing ion channels (ASICs), ASIC1a and ASIC3 subunits are the most widespread and prevalent in physiological and pathophysiological conditions. They participate in synaptic plasticity, learning and memory, as well as the perception of inflammatory and neurological pain, making these channels attractive pharmacological targets. Sevanol, a natural lignan isolated from Thymus armeniacus, inhibits the activity of ASIC1a and ASIC3 isoforms, and has a significant analgesic and anti-inflammatory effect. In this work, we described the efficient chemical synthesis scheme of sevanol and its analogues, which allows us to analyze the structure-activity relationships of the different parts of this molecule. We found that the inhibitory activity of sevanol and its analogues on ASIC1a and ASIC3 channels depends on the number and availability of the carboxyl groups of the molecule. At the structural level, we predicted the presence of a sevanol binding site based on the presence of molecular docking in the central vestibule of the ASIC1a channel. We predicted that this site could also be occupied in part by the FRRF-amide peptide, and the competition assay of sevanol with this peptide confirmed this prediction. The intravenous (i.v.), intranasal (i.n.) and, especially, oral (p.o.) administration of synthetic sevanol in animal models produced significant analgesic and anti-inflammatory effects. Both non-invasive methods of sevanol administration (i.n. and p.o.) showed greater efficacy than the invasive (i.v.) method, thus opening new horizons for medicinal uses of sevanol.

9.
Toxins (Basel) ; 12(4)2020 04 20.
Article in English | MEDLINE | ID: mdl-32326130

ABSTRACT

Currently, five peptide modulators of acid-sensing ion channels (ASICs) attributed to structural class 1b of sea anemone toxins have been described. The APETx2 toxin is the first and most potent ASIC3 inhibitor, so its homologs from sea anemones are known as the APETx-like peptides. We have discovered that two APETx-like peptides from the sea anemone Heteractis crispa, Hcr 1b-3 and Hcr 1b-4, demonstrate different effects on rASIC1a and rASIC3 currents. While Hcr 1b-3 inhibits both investigated ASIC subtypes with IC50 4.95 ± 0.19 µM for rASIC1a and 17 ± 5.8 µM for rASIC3, Hcr 1b-4 has been found to be the first potentiator of ASIC3, simultaneously inhibiting rASIC1a at similar concentrations: EC50 1.53 ± 0.07 µM and IC50 1.25 ± 0.04 µM. The closest homologs, APETx2, Hcr 1b-1, and Hcr 1b-2, previously demonstrated the ability to inhibit hASIC3 with IC50 63 nM, 5.5, and 15.9 µM, respectively, while Hcr 1b-2 also inhibited rASIC1a with IC50 4.8 ± 0.3 µM. Computer modeling allowed us to describe the peculiarities of Hcr 1b-2 and Hcr 1b-4 interfaces with the rASIC1a channel and the stabilization of the expanded acidic pocket resulting from peptides binding which traps the rASIC1a channel in the closed state.


Subject(s)
Acid Sensing Ion Channels/physiology , Cnidarian Venoms/pharmacology , Peptides/pharmacology , Sea Anemones , Animals , Cnidarian Venoms/chemistry , Models, Molecular , Oocytes , Peptides/chemistry , Recombinant Proteins , Xenopus laevis
10.
J Neurochem ; 155(1): 45-61, 2020 10.
Article in English | MEDLINE | ID: mdl-32222974

ABSTRACT

Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50  ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.


Subject(s)
Adaptor Proteins, Signal Transducing/pharmacology , Cholinesterase Inhibitors/toxicity , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/psychology , Neuronal Plasticity/drug effects , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Acetylcholine/pharmacology , Adaptor Proteins, Signal Transducing/pharmacokinetics , Alkaloids/pharmacology , Animals , Blood-Brain Barrier/drug effects , Brain/metabolism , Cognitive Dysfunction/chemically induced , Interneurons/drug effects , Learning/drug effects , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Smell/drug effects , Visual Cortex/drug effects , Xenopus laevis
11.
Toxins (Basel) ; 11(9)2019 09 18.
Article in English | MEDLINE | ID: mdl-31540492

ABSTRACT

Acid-sensing ion channels (ASICs), which are present in almost all types of neurons, play an important role in physiological and pathological processes. The ASIC1a subtype is the most sensitive channel to the medium's acidification, and it plays an important role in the excitation of neurons in the central nervous system. Ligands of the ASIC1a channel are of great interest, both fundamentally and pharmaceutically. Using a two-electrode voltage-clamp electrophysiological approach, we characterized lindoldhamine (a bisbenzylisoquinoline alkaloid extracted from the leaves of Laurus nobilis L.) as a novel inhibitor of the ASIC1a channel. Lindoldhamine significantly inhibited the ASIC1a channel's response to physiologically-relevant stimuli of pH 6.5-6.85 with IC50 range 150-9 µM, but produced only partial inhibition of that response to more acidic stimuli. In mice, the intravenous administration of lindoldhamine at a dose of 1 mg/kg significantly reversed complete Freund's adjuvant-induced thermal hyperalgesia and inflammation; however, this administration did not affect the pain response to an intraperitoneal injection of acetic acid (which correlated well with the function of ASIC1a in the peripheral nervous system). Thus, we describe lindoldhamine as a novel antagonist of the ASIC1a channel that could provide new approaches to drug design and structural studies regarding the determinants of ASIC1a activation.


Subject(s)
Acid Sensing Ion Channel Blockers/therapeutic use , Acid Sensing Ion Channels/physiology , Anti-Inflammatory Agents/therapeutic use , Benzene Derivatives/therapeutic use , Quinolines/therapeutic use , Acetic Acid , Acid Sensing Ion Channel Blockers/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Benzene Derivatives/pharmacology , Female , Freund's Adjuvant , Hot Temperature/adverse effects , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inflammation/chemically induced , Inflammation/drug therapy , Male , Mice , Oocytes/physiology , Pain/chemically induced , Pain/drug therapy , Quinolines/pharmacology , Xenopus laevis
12.
Biomolecules ; 9(8)2019 08 02.
Article in English | MEDLINE | ID: mdl-31382492

ABSTRACT

Acid-sensing ion channels (ASICs) are proton-gated sodium-selective channels that are expressed in the peripheral and central nervous systems. ASIC1a is one of the most intensively studied isoforms due to its importance and wide representation in organisms, but it is still largely unexplored as a target for therapy. In this study, we demonstrated response of the ASIC1a to acidification in the presence of the daurisoline (DAU) ligand. DAU alone did not activate the channel, but in combination with protons, it produced the second peak component of the ASIC1a current. This second peak differs from the sustained component (which is induced by RF-amide peptides), as the second (DAU-induced) peak is completely desensitized, with the same kinetics as the main peak. The co-application of DAU and mambalgin-2 indicated that their binding sites do not overlap. Additionally, we found an asymmetry in the pH activation curve of the channel, which was well-described by a mathematical model based on the multiplied probabilities of protons binding with a pool of high-cooperative sites and a single proton binding with a non-cooperative site. In this model, DAU targeted the pool of high-cooperative sites and, when applied with protons, acted as an inhibitor of ASIC1a activation. Moreover, DAU's occupation of the same binding site most probably reverses the channel from steady-state desensitization in the pH 6.9-7.3 range. DAU features disclose new opportunities in studies of ASIC structure and function.


Subject(s)
Acid Sensing Ion Channels/metabolism , Benzylisoquinolines/pharmacology , Animals , Benzylisoquinolines/chemistry , Female , Ligands , Molecular Structure , Oocytes/drug effects , Oocytes/metabolism , Rats , Xenopus laevis
13.
Biomolecules ; 9(9)2019 08 22.
Article in English | MEDLINE | ID: mdl-31443477

ABSTRACT

Acid-sensing ion channel (ASIC) channels belong to the family of ligand-gated ion channels known as acid-sensing (proton-gated) ion channels. Only a few activators of ASICs are known. These are exogenous and endogenous molecules that cause a persistent, slowly desensitized current, different from an acid-induced current. Here we describe a novel endogenous agonist of ASICs-peptide nocistatin produced by neuronal cells and neutrophils as a part of prepronociceptin precursor protein. The rat nocistatin evoked currents in X. laevis oocytes expressing rat ASIC1a, ASIC1b, ASIC2a, and ASIC3 that were very similar in kinetic parameters to the proton-gated response. Detailed characterization of nocistatin action on rASIC1a revealed a proton-like dose-dependence of activation, which was accompanied by a dose-dependent decrease in the sensitivity of the channel to the protons. The toxin mambalgin-2, antagonist of ASIC1a, inhibited nocistatin-induced current, therefore the close similarity of mechanisms for ASIC1a activation by peptide and protons could be suggested. Thus, nocistatin is the first endogenous direct agonist of ASICs. This data could give a key to understanding ASICs activation regulation in the nervous system and also could be used to develop new drugs to treat pathological processes associated with ASICs activation, such as neurodegeneration, inflammation, and pain.


Subject(s)
Acid Sensing Ion Channels/metabolism , Neuropeptides/pharmacology , Opioid Peptides/pharmacology , Sodium Channel Agonists/pharmacology , Amino Acid Sequence , Animals , Neuropeptides/chemistry , Opioid Peptides/chemistry , Rats , Sodium Channel Agonists/chemistry
14.
Mar Drugs ; 16(12)2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30545037

ABSTRACT

Acid-sensing ion channel 3 (ASIC3) makes an important contribution to the development and maintenance of inflammatory and acid-induced pain. We compared different ASIC3 inhibitors (peptides from sea anemones (APETx2 and Ugr9-1) and nonpeptide molecules (sevanol and diclofenac)) in anti-inflammatory action and analgesic effects. All tested compounds had distinct effects on pH-induced ASIC3 current. APETx2 inhibited only transient current, whereas Ugr9-1 and sevanol decreased transient and sustained components of the current. The effect on mice was evaluated after administering an intramuscular injection in the acetic acid writhing pain model and the complete Freund's adjuvant-induced thermal hyperalgesia/inflammation test. The bell-shaped dependence of the analgesic effect was observed for APETx2 in the acetic acid-induced writhing test, as well as for sevanol and peptide Ugr9-1 in the thermal hyperalgesia test. This dependence could be evidence of the nonspecific action of compounds in high doses. Compounds reducing both components of ASIC3 current produced more significant pain relief than APETx2, which is an effective inhibitor of a transient current only. Therefore, the comparison of the efficacy of ASIC3 inhibitors revealed the importance of ASIC3-sustained currents' inhibition for promotion of acidosis-related pain relief.


Subject(s)
Acid Sensing Ion Channel Blockers/pharmacology , Analgesics/pharmacology , Biological Products/pharmacology , Hyperalgesia/drug therapy , Pain/drug therapy , Sea Anemones , Acetic Acid/toxicity , Acid Sensing Ion Channels/metabolism , Animals , Diclofenac/pharmacology , Disease Models, Animal , Humans , Hyperalgesia/chemically induced , Male , Mice , Nociception/drug effects , Pain/chemically induced , Patch-Clamp Techniques , Peptides/pharmacology , Xenopus laevis
15.
Br J Pharmacol ; 175(6): 924-937, 2018 03.
Article in English | MEDLINE | ID: mdl-29277899

ABSTRACT

BACKGROUND AND PURPOSE: Acid-sensing ion channels (ASICs) play an important role in synaptic plasticity and learning, as well as in nociception and mechanosensation. ASICs are involved in pain and in neurological and psychiatric diseases, but their therapeutic potential is limited by the lack of ligands activating them at physiological pH. EXPERIMENTAL APPROACH: We extracted, purified and determined the structure of a bisbenzylisoquinoline alkaloid, lindoldhamine, (LIN) from laurel leaves. Its effect on ASIC3 channels were characterized, using two-electrode voltage-clamp electrophysiological recordings from Xenopus laevis oocytes. KEY RESULTS: At pH 7.4 or higher, LIN activated a sustained, proton-independent, current through rat and human ASIC3 channels, but not rat ASIC1a or ASIC2a channels. LIN also potentiated proton-induced transient currents and promoted recovery from desensitization in human, but not rat, ASIC3 channels. CONCLUSIONS AND IMPLICATIONS: We describe a novel ASIC subtype-specific agonist LIN, which induced proton-independent activation of human and rat ASIC3 channels at physiological pH. LIN also acts as a positive allosteric modulator of human, but not rat, ASIC3 channels. This unique, species-selective, ligand of ASIC3, opens new avenues in studies of ASIC structure and function, as well as providing new approaches to drug design.


Subject(s)
Acid Sensing Ion Channels/drug effects , Alkaloids/pharmacology , Laurus/chemistry , Acid Sensing Ion Channels/metabolism , Alkaloids/chemistry , Alkaloids/isolation & purification , Allosteric Regulation/drug effects , Animals , Female , Humans , Hydrogen-Ion Concentration , Oocytes , Patch-Clamp Techniques , Plant Leaves , Protons , Rats , Species Specificity , Xenopus laevis
16.
Front Mol Neurosci ; 10: 282, 2017.
Article in English | MEDLINE | ID: mdl-28955199

ABSTRACT

Acid-sensing ion channels (ASICs) ASIC3 expressed mainly in peripheral sensory neurons play an important role in pain perception and inflammation development. In response to acidic stimuli, they can generate a unique biphasic current. At physiological pH 7.4, human ASIC3 isoform (hASIC3) is desensitized and able to generate only a sustained current. We found endogenous isoquinoline alkaloids (EIAs), which restore hASIC3 from desensitization and recover the transient component of the current. Similarly, rat ASIC3 isoform (rASIC3) can also be restored from desensitization (at pH < 7.0) by EIAs with the same potency. At physiological pH and above, EIAs at high concentrations were able to effectively activate hASIC3 and rASIC3. Thus, we found first endogenous agonists of ASIC3 channels that could both activate and prevent or reverse desensitization of the channel. The decrease of EIA levels could be suggested as a novel therapeutic strategy for treatment of pain and inflammation.

17.
Toxicon ; 116: 11-6, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-26686983

ABSTRACT

Peptide Ugr9-1 from the venom of sea anemone Urticina grebelnyi selectively inhibits the ASIC3 channel and significantly reverses inflammatory and acid-induced pain in vivo. A close homolog peptide Ugr 9-2 does not have these features. To find the pharmacophore residues and explore structure-activity relationships of Ugr 9-1, we performed site-directed mutagenesis of Ugr 9-2 and replaced several positions by the corresponding residues from Ugr 9-1. Mutant peptides Ugr 9-2 T9F and Ugr 9-2 Y12H were able to inhibit currents of the ASIC3 channels 2.2 times and 1.3 times weaker than Ugr 9-1, respectively. Detailed analysis of the spatial models of Ugr 9-1, Ugr 9-2 and both mutant peptides revealed the presence of the basic-aromatic clusters on opposite sides of the molecule, each of which is responsible for the activity. Additionally, Ugr9-1 mutant with truncated N- and C-termini retained similar with the Ugr9-1 action in vitro and was equally potent in vivo model of thermal hypersensitivity. All together, these results are important for studying the structure-activity relationships of ligand-receptor interaction and for the future development of peptide drugs from animal toxins.


Subject(s)
Acid Sensing Ion Channel Blockers/chemistry , Acid Sensing Ion Channels/chemistry , Cnidarian Venoms/chemistry , Animals , Catalytic Domain , Humans , Models, Molecular , Mutagenesis, Site-Directed , Protein Structure, Tertiary , Sequence Analysis, Protein , Structure-Activity Relationship , Xenopus laevis
18.
J Biol Chem ; 288(32): 23116-27, 2013 Aug 09.
Article in English | MEDLINE | ID: mdl-23801332

ABSTRACT

Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 µM) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 µM). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical ß-turns and twisted ß-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless ß-hairpin.


Subject(s)
Acid Sensing Ion Channels/metabolism , Analgesics , Peptides , Sea Anemones , Acid Sensing Ion Channels/genetics , Amino Acid Sequence , Analgesics/chemistry , Analgesics/isolation & purification , Analgesics/pharmacology , Animals , Humans , Male , Mice , Molecular Sequence Data , Pain/drug therapy , Pain/metabolism , Pain/pathology , Peptides/chemistry , Peptides/genetics , Peptides/isolation & purification , Peptides/pharmacology , Protein Structure, Secondary , Sea Anemones/chemistry , Sea Anemones/genetics , Xenopus laevis
19.
J Biol Chem ; 287(39): 32993-3000, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22854960

ABSTRACT

A novel compound was identified in the acidic extract of Thymus armeniacus collected in the Lake Sevan region of Armenia. This compound, named "sevanol," to our knowledge is the first low molecular weight natural molecule that has a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. Sevanol completely blocked the transient component (IC(50) 353 ± 23 µM) and partially (∼45%) inhibited the amplitude of the sustained component (IC(50) of 234 ± 53 µM). Other types of acid-sensing ion channel (ASIC) channels were intact to sevanol application, except ASIC1a, which showed more than six times less affinity to it as compared with the inhibitory action on the ASIC3 channel. To elucidate the structure of sevanol, the set of NMR spectra in two solvents (d(6)-DMSO and D(2)O) was collected, and the complete chemical structure was confirmed by liquid chromatography-mass spectrometry with electrospray ionization (LC-ESI(+)-MS) fragmentation. This compound is a new lignan built up of epiphyllic acid and two isocitryl esters in positions 9 and 10. In vivo administration of sevanol (1-10 mg/kg) significantly reversed thermal hyperalgesia induced by complete Freund's adjuvant injection and reduced response to acid in a writhing test. Thus, we assume the probable considerable role of sevanol in known analgesic and anti-inflammatory properties of thyme.


Subject(s)
Acid Sensing Ion Channels/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Lignans/pharmacology , Thymus Plant/chemistry , Acid Sensing Ion Channels/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Humans , Ion Transport/drug effects , Lignans/chemistry , Nuclear Magnetic Resonance, Biomolecular , Oocytes/cytology , Oocytes/metabolism , Xenopus laevis
20.
J Biol Chem ; 283(35): 23914-21, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18579526

ABSTRACT

Venomous animals from distinct phyla such as spiders, scorpions, snakes, cone snails, or sea anemones produce small toxic proteins interacting with a variety of cell targets. Their bites often cause pain. One of the ways of pain generation is the activation of TRPV1 channels. Screening of 30 different venoms from spiders and sea anemones for modulation of TRPV1 activity revealed inhibitors in tropical sea anemone Heteractis crispa venom. Several separation steps resulted in isolation of an inhibiting compound. This is a 56-residue-long polypeptide named APHC1 that has a Bos taurus trypsin inhibitor (BPTI)/Kunitz-type fold, mostly represented by serine protease inhibitors and ion channel blockers. APHC1 acted as a partial antagonist of capsaicin-induced currents (32 +/- 9% inhibition) with half-maximal effective concentration (EC(50)) 54 +/- 4 nm. In vivo, a 0.1 mg/kg dose of APHC1 significantly prolonged tail-flick latency and reduced capsaicin-induced acute pain. Therefore, our results can make an important contribution to the research into molecular mechanisms of TRPV1 modulation and help to solve the problem of overactivity of this receptor during a number of pathological processes in the organism.


Subject(s)
Analgesics/pharmacology , Cnidarian Venoms/pharmacology , Pain/drug therapy , Peptides/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Analgesics/isolation & purification , Animals , Aprotinin , Base Sequence , Capsaicin/pharmacology , Cats , Cnidarian Venoms/isolation & purification , Dose-Response Relationship, Drug , Humans , Male , Mice , Molecular Sequence Data , Oocytes , Pain/chemically induced , Peptides/isolation & purification , Protein Folding , Sea Anemones , Sensory System Agents/pharmacology , Structural Homology, Protein , TRPV Cation Channels/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...