Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chemistry ; : e202401590, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38749912

ABSTRACT

Photo-triggered phase transition is a new type of phase transition in which a photochromic crystal with a thermal phase transition transforms into an identical high-temperature phase in a temperature region lower than the thermal phase transition temperature upon light irradiation. Here, we report a second crystal that exhibits a photo-triggered phase transition, thereby demonstrating that the photo-triggered phase transition is a general phenomenon that occurs in crystals. When the chiral salicylidenephenylethylamine crystal was irradiated with ultraviolet (UV) light, the photo-triggered phase transition occurred in the temperature range -30 to -10°C. The photo-triggered phase transition is induced by local stress due to trans-keto molecules produced by photoisomerization near the irradiated surface. Crystal cantilevers exhibited stepwise bending by the combination of the photo-triggered phase transition and photoisomerization. Alternate irradiation with UV and visible light achieved locomotion of single crystals driven by repeated stepwise bending. Finally, a detailed comparison of photo-triggered and non-photo-triggered phase transition crystals revealed that a sufficient molecular conformation change in affordable crystal voids, smooth photoisomerization, and most likely a chiral molecular arrangement are required for inducing the photo-triggered phase transition.

2.
ACS Omega ; 9(1): 1463-1471, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222500

ABSTRACT

Salicylideneanilines (SAs) are photochromic compounds that undergo enol-keto photoisomerization in the solid state. Research over the past 60 years has revealed empirically that SAs with steric and planar conformations tend to be photochromic and nonphotochromic, respectively. However, increasing counterexamples in the recent literature raise questions about the nature of the relationship between structure and photochromism in SA crystals and whether the photochromism of SA crystals is predictable. This study is the first to construct a data set on SA crystals and conduct a comprehensive analysis to investigate the relationship between molecular and crystal structures and photochromism. A data mining approach revealed that the dihedral angle is the most dominant structural parameter for photochromism, followed by the Hirshfeld surface volume. SAs with neutral bulky hydrocarbon groups, such as the tert-butyl group, tend to be photochromic because such SAs have steric conformation and a loosely packed structure. In contrast, SAs with fluorine, pyridine, and pyrazine are less likely to be photochromic due to their planar conformation and densely packed structures. The photochromism of the SA crystals in our data set was predicted with high accuracy (>85%) using machine learning. The results of this study provide a useful reference for designing SA crystals with desired photochromic properties.

3.
Chem Sci ; 15(3): 1088-1097, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239690

ABSTRACT

Materials displaying negative thermal expansion (NTE), in contrast to typical materials with positive thermal expansion (PTE), are attractive for both fundamental research and practical applications, including the development of composites with near-zero thermal expansion. A recent data mining study revealed that approximately 34% of organic crystals may present NTE, indicating that NTE in organic crystals is much more common than generally believed. However, organic crystals that switch from NTE to PTE or vice versa have rarely been reported. Here, we report the crystal of N-3,5-di-tert-butylsalicylide-3-nitroaniline in the enol form (enol-1) as the first organic crystal in which the axial thermal expansion changes from negative to positive at around room temperature. When heated, the crystal shrinks along the a-axis below 30 °C and then it expands above 30 °C. Geometric calculations revealed that below 30 °C, the decrease in the tilt angle of the molecule exceeds the increase in the interplanar distance, causing NTE, whereas above 30 °C, the increase in the interplanar distance outweighs the decrease in the tilt angle, resulting in PTE. By combining photoisomerisation and the NTE-PTE switching induced by the photothermal effect, multistep crystal photoactuation was achieved. Moreover, actuation switching of the same crystal sample by changing atmosphere temperature was realised by utilising the NTE-PTE change. Such NTE-PTE switching without a thermal phase transition provides not only new insight into organic crystals but also a new strategy for designing crystal actuators.

4.
Chem Soc Rev ; 52(9): 3098-3169, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37070570

ABSTRACT

In the last century, molecular crystals functioned predominantly as a means for determining the molecular structures via X-ray diffraction, albeit as the century came to a close the response of molecular crystals to electric, magnetic, and light fields revealed that the physical properties of molecular crystals were as rich as the diversity of molecules themselves. In this century, the mechanical properties of molecular crystals have continued to enhance our understanding of the colligative responses of weakly bound molecules to internal frustration and applied forces. Here, the authors review the main themes of research that have developed in recent decades, prefaced by an overview of the particular considerations that distinguish molecular crystals from traditional materials such as metals and ceramics. Many molecular crystals will deform themselves as they grow under some conditions. Whether they respond to intrinsic stress or external forces or interactions among the fields of growing crystals remains an open question. Photoreactivity in single crystals has been a leading theme in organic solid-state chemistry; however, the focus of research has been traditionally on reaction stereo- and regio-specificity. However, as light-induced chemistry builds stress in crystals anisotropically, all types of motions can be actuated. The correlation between photochemistry and the responses of single crystals-jumping, twisting, fracturing, delaminating, rocking, and rolling-has become a well-defined field of research in its own right: photomechanics. The advancement of our understanding requires theoretical and high-performance computations. Computational crystallography not only supports interpretations of mechanical responses, but predicts the responses itself. This requires the engagement of classical force-field based molecular dynamics simulations, density functional theory-based approaches, and the use of machine learning to divine patterns to which algorithms can be better suited than people. The integration of mechanics with the transport of electrons and photons is considered for practical applications in flexible organic electronics and photonics. Dynamic crystals that respond rapidly and reversibly to heat and light can function as switches and actuators. Progress in identifying efficient shape-shifting crystals is also discussed. Finally, the importance of mechanical properties to milling and tableting of pharmaceuticals in an industry still dominated by active ingredients composed of small molecule crystals is reviewed. A dearth of data on the strength, hardness, Young's modulus, and fracture toughness of molecular crystals underscores the need for refinement of measurement techniques and conceptual tools. The need for benchmark data is emphasized throughout.

5.
Nat Commun ; 14(1): 1354, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36907883

ABSTRACT

The flourishing field of soft robotics requires versatile actuation methodology. Natural vibration is a physical phenomenon that can occur in any material. Here, we report high-speed bending of anisole crystals by natural vibration induced by the photothermal effect. Rod-shaped crystal cantilevers undergo small, fast repetitive bending (~0.2°) due to natural vibration accompanied by large photothermal bending (~1°) under ultraviolet light irradiation. The natural vibration is greatly amplified by resonance upon pulsed light irradiation at the natural frequency to realise high frequency (~700 Hz), large bending (~4°), and high energy conversion efficiency from light to mechanical energy. The natural vibration is induced by the thermal load generated by the temperature gradient in the crystal due to the photothermal effect. The bending behaviour is successfully simulated using finite element analysis. Any light-absorbing crystal can be actuated by photothermally induced natural vibration. This finding of versatile crystal actuation can lead to the development of soft robots with high-speed and high-efficient actuation capabilities.

6.
Chem Sci ; 13(31): 8989-9003, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36091219

ABSTRACT

As an emerging class of flexible materials, mechanically bendable molecular crystals are broadly classified as elastic or plastic. Nevertheless, flexible organic crystals with mutually exclusive elastic and plastic traits, with contrasting structural requirements, co-existing under different stress settings are exceptional; hence, it is imperative to establish the concurring factors that beget this rare occurrence. We report a series of halogen-substituted benzil crystals showing elastic bending (within ∼2.45% strain), followed by elastoplastic deformation under ambient conditions. Under higher stress settings, they display exceptional plastic flexibility that one could bend, twist, or even coil around a capillary tube. X-ray diffraction, microscopy, and computational data reveal the microscopic and macroscopic basis for the exciting co-existence of elastic, elastoplastic, and plastic properties in the crystals. The layered molecular arrangement and the weak dispersive interactions sustaining the interlayer region provide considerable tolerance towards breaking and making upon engaging or releasing the external stress; it enables restoring the original state within the elastic strain. Comparative studies with oxalate compounds, wherein the twisted diketo moiety in benzil was replaced with a rigid and coplanar central oxalate moiety, enabled us to understand the effect of the anisotropy factor on the crystal packing induced by the C[double bond, length as m-dash]O⋯C tetral interactions. The enhanced anisotropy depreciated the elastic domain, making the oxalate crystals more prone to plastic deformation. Three-point bending experiments and the determined Young's moduli further corroborate the co-existence of the elastic and plastic realm and highlight the critical role of the underlying structural elements that determine the elastic to plastic transformation. The work highlights the possible co-existence of orthogonal mechanical characteristics in molecular crystals and further construed the concurrent role of microscopic and macroscopic elements in attaining this exceptional mechanical trait.

7.
Commun Chem ; 5(1): 4, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-36697637

ABSTRACT

Superelasticity is a type of elastic response to an applied external force, caused by a phase transformation. Actuation of materials is also an elastic response to external stimuli such as light and heat. Although both superelasticity and actuation are deformations resulting from stimulus-induced stress, there is a phenomenological difference between the two with respect to whether force is an input or an output. Here, we report that a molecular crystal manifests superelasticity during photo-actuation under light irradiation. The crystal exhibits stepwise twisted actuation due to two effects, photoisomerization and photo-triggered phase transition, and the actuation behavior is simulated based on a dynamic multi-layer model. The simulation, in turn, reveals how the photoisomerization and phase transition progress in the crystal, indicating superelasticity induced by modest stress due to the formation of photoproducts. This work provides not only a successful simulation of stepwise twisted actuation, but also to the best of our knowledge the first indication of superelasticity induced by light.

8.
J Am Chem Soc ; 143(23): 8866-8877, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34096298

ABSTRACT

Mechanically responsive crystals have been increasingly explored, mainly based on photoisomerization. However, photoisomerization has some disadvantages for crystal actuation, such as a slow actuation speed, no actuation of thick crystals, and a narrow wavelength range. Here we report photothermally driven fast-bending actuation and simulation of a salicylideneaniline derivative crystal with an o-amino substituent in enol form. Under ultraviolet (UV) light irradiation, these thin (<20 µm) crystals bent but the thick (>40 µm) crystals did not due to photoisomerization; in contrast, thick crystals bent very quickly (in several milliseconds) due to the photothermal effect, even by visible light. Finally, 500 Hz high-frequency bending was achieved by pulsed UV laser irradiation. The generated photothermal energy was estimated based on the photodynamics using femtosecond transient absorption. Photothermal bending is caused by a nonsteady temperature gradient in the thickness direction due to the heat conduction of photothermal energy generated near the crystal surface. The temperature gradient was calculated based on the one-dimensional nonsteady heat conduction equation to simulate photothermally driven crystal bending successfully. Most crystals that absorb light have their own photothermal effects. It is expected that the creation and design of actuation of almost all crystals will be possible via the photothermal effect, which cannot be realized by photoisomerization, and the potential and versatility of crystals as actuation materials will expand in the near future.

9.
Front Robot AI ; 8: 684287, 2021.
Article in English | MEDLINE | ID: mdl-34055902

ABSTRACT

Recently, soft robots, which are made of soft and light organic materials, have attracted much attention because of improved safety for daily interactions with humans. Mechanically responsive materials that can move macroscopically by external stimuli, such as light and heat, have been studied extensively over the past two decades, and they are expected to be applicable to soft robots. Among them, mechanically responsive crystals are attractive in terms of a larger Young's modulus and faster response speed compared with polymers and gels. However, it is impractical to use one piece of a single crystal as a crystal machine; it is difficult to control the size of crystals and obtain large crystals. Hybridization of crystals with polymers is one way to create actuators with more realistic movements. Herein, we report a hybrid crystal assembly in which plate-like salicylideneaniline crystals are aligned in polymer films by a "rubbing" technique, a new approach which is inexpensive, easy, and applicable to a wide range of crystals and polymers. The hybrid films bent reversibly upon alternate irradiation with ultraviolet and visible light. The hybrid films bent as fast as single crystals, even when larger than single-crystal size, showing great mechanical performance originating from the advantages of both molecular crystals (fast response time) and polymers (large size). This work enriches the development of light-driven hybrid actuators composed of molecular crystals and polymers.

10.
Nat Commun ; 9(1): 538, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416019

ABSTRACT

The mechanical motion of materials has been increasingly explored in terms of bending and expansion/contraction. However, the locomotion of materials has been limited. Here, we report walking and rolling locomotion of chiral azobenzene crystals, induced thermally by a reversible single-crystal-to-single-crystal phase transition. Long plate-like crystals with thickness gradient in the longitudinal direction walk slowly, like an inchworm, by repeated bending and straightening under heating and cooling cycles near the transition temperature. Furthermore, thinner, longer plate-like crystals with width gradient roll much faster by tilted bending and then flipping under only one process of heating or cooling. The length of the crystal is shortened above the transition temperature, which induces bending due to the temperature gradient to the thickness direction. The bending motion is necessarily converted to the walking and rolling locomotion due to the unsymmetrical shape of the crystal. This finding of the crystal locomotion can lead to a field of crystal robotics.

11.
RSC Adv ; 8(60): 34314-34320, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-35548618

ABSTRACT

Photomechanical crystals are interesting from both basic and applied perspectives, and thus it is important to develop new examples. We investigated the photomechanical bending behaviour of a photochromic crystal of a dibenzobarrelene derivative. When a plate-like crystal was irradiated with ultraviolet (UV) light at 365 nm, two-step bending was observed. In the first step, the crystal quickly bent away from the light source, with an accompanying crystal colour change from colourless to purple. In the second step, under prolonged UV light, the bending returned slowly and then the crystal bent up towards the opposite direction, accompanied by an additional colour change to light yellow. Spectroscopic measurements and X-ray crystallographic analysis suggested that a long-lived biradical species is generated immediately upon UV light irradiation via a Norrish type II intramolecular hydrogen abstraction, and then the final photoproducts are formed under continuous UV exposure. X-ray crystallographic analysis before and after UV light irradiation for a few seconds revealed that the longitudinal axis (a axis) of the crystal elongated slightly after irradiation, which is consistent with the direction of the first-step bending. Based on these results, we propose that first-step bending could be induced by a biradical species, generated via a Norrish type II intramolecular hydrogen abstraction, and the second-step bending could originate from the formation of a mixture of final photoproducts under prolonged light irradiation.

12.
J Am Chem Soc ; 138(45): 15066-15077, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27775356

ABSTRACT

Introducing chirality into photomechanical crystals is beneficial for the diversification of mechanical motion. Measurement of the chiroptical and optical anisotropic properties of chiral crystals is indispensable for evaluating photomechanical crystals. The platelike crystals of S- and R-enantiomers of photochromic N-3,5-di-tert-butylsalicylidene-1-phenylethylamine in enol form (enol-(S)-1 and enol-(R)-1) caused bending motion with twisting upon ultraviolet (UV) light irradiation, due to shrinkage along the length and width directions of the irradiated surface, based on the optimized crystal structure of the photoisomerized trans-keto-(S)-1. By employing the generalized high-accuracy universal polarimeter (G-HAUP), optical anisotropic (linear birefringence, LB; linear dichroism, LD) as well as chiroptical (circular birefringence, CB; circular dichroism, CD) spectra of both the enantiomeric crystals on the (001) face were simultaneously measured before and under continuous UV irradiation. The LD peak was observed at 330 nm in the negative sign, derived from the π-π* transition of the intramolecularly hydrogen-bonded salicylidenimino moiety. The CD spectra of the S and R crystals revealed the negative and positive Cotton effect at 330 nm, respectively, and new peaks appeared at 460 nm under UV light irradiation due to photoisomerization to the S and R trans-keto isomers at around 10% conversion. The CB and CD spectra evaluated by the HAUP measurement were opposite to those measured in the hexane solution, as well as those simulated by quantum chemical calculation. The dissymmetry parameter, g, of the enol-(S)-1 crystal along the c axis (0.013) was approximately 10 times larger than the g values in the solution (0.0010) and by calculation (0.0016).

13.
Chemistry ; 22(23): 7950-8, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27097760

ABSTRACT

The photomechanical motion of chiral crystals of trans-azobenzene derivatives with an (S)- and (R)-phenylethylamide group was investigated and compared with a racemic crystal. Changes in the UV/Vis absorption spectra of the powdered crystals before and after UV irradiation were measured by using an optical waveguide spectrometer, showing that the lifetime of the cis-to-trans thermal back-isomerization of the chiral crystals was faster than that of the racemic crystals. Upon UV irradiation, a long plate-like chiral microcrystal bent away from the light source with a twisting motion. A square-like chiral microcrystal curled toward the light with some twisting. Reversible bending of a rod-like chiral microcrystal was repeatable over twenty-five cycles. In contrast, bending of a plate-like racemic microcrystal was small. A possible mechanism for the bending and twisting motion was discussed based on the optimized cis conformer determined by using calculations, showing that the bending motion with twisting is caused by elongation along the b axis and shrinkage along the a axis.

14.
J Org Chem ; 79(7): 3088-93, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24628575

ABSTRACT

Although 4-(2,4,6-triisopropylbenzoyl)benzylbenzamide is an achiral molecule, chiral crystals can form through spontaneous crystallization in a methanol solution. In the M crystal, twofold helical hydrogen-bond chains form in a counterclockwise direction among the molecules along the a axis to generate crystal chirality. The solid-state circular dichroism spectra of the two enantiomorphous crystals as Nujol mulls show a good mirror-image relationship. UV irradiation of the M crystal at >290 nm caused highly enantioselective Norrish type II photocyclization to yield the (R)-cyclobutenol with 94% ee in 100% yield as the sole product, resulting in successful absolute asymmetric synthesis. In contrast, the (S)-cyclobutenol was obtained from the P crystal with 95% ee in 100% yield. The high enantiodifferentiation in the crystalline-state photocyclization is attributed to the shorter distance between the carbonyl oxygen atom and one of the methine γ-hydrogen atoms of the two o-isopropyl groups as well as the smooth transformation with minimum molecular motion because of the similar shapes of the reactant and product molecules. UV irradiation of the platelike crystals resulted in a crack in the direction perpendicular to the long axis (the a axis of the unit cell), likely because the hydrogen-bond chains were broken during the photocyclization.

15.
Chem Commun (Camb) ; 47(41): 11423-5, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21935561

ABSTRACT

Platelike microcrystals of N-3,5-di-tert-butylsalicylidene-3-nitroaniline repeatedly bend and straighten upon alternate irradiation with UV and visible light. The mechanism of bending was elucidated by X-ray crystallographic analyses before and after photoirradiation.

16.
J Am Chem Soc ; 131(20): 6890-1, 2009 May 27.
Article in English | MEDLINE | ID: mdl-19453188

ABSTRACT

Photomechanical bending of trans-4-(dimethylamino)azobenzene microcrystals was observed. Upon UV irradiation, the (001) face of the platelike microcrystals bent quickly in the direction opposite the light source, reaching the maximum deflection after 0.5 s. The microcrystal returned to its initial flat shape 30 s after the illumination was stopped. This mechanical motion was reversible over repeated cycles of UV irradiation. The bending effect was attributed to a gradient in the extent of UV-induced trans-cis photoisomerization as a function of light penetration, causing the expansion of the irradiated crystal surface along the b axis to result in a bent macrostructure.

17.
J Org Chem ; 72(18): 6786-91, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17691740

ABSTRACT

Reaction of crystals of 2,4,6-triisopropylbenzophenone derivative with the (S)-phenylethylamide group caused diastereospecific Norrish type II photocyclization by UV irradiation to give (R,S)-cyclobutenol as a sole product. In contrast, the solution photolysis gave an almost 1:1 mixture of (R,S)- and (S,S)-cyclobutenol. The specific diastereodifferentiation in the crystalline state is attributed to the smooth transformation with minimum molecular motion due to the very similar molecular shapes as well as the 2-fold helical arrangements between the reactant crystal and the product (R,S)-cyclobutenol crystal. UV irradiation of the bulk crystals led to cracking and breaking into small fragments. In contrast, the microcrystals maintained the single-crystalline morphology in the course of photocyclization, suggesting the single-crystal-to-single-crystal transformation.

18.
Chem Commun (Camb) ; (17): 1869-71, 2006 May 07.
Article in English | MEDLINE | ID: mdl-16622512

ABSTRACT

Enantiomorphous crystals composed of achiral hippuric acid, i.e., naturally occurring N-benzoylglycine, have been used successfully as chiral inducers in enantioselective synthesis in combination with asymmetric autocatalysis to afford the product with extremely high enantiomeric excess.


Subject(s)
Hippurates/chemistry , Catalysis , Circular Dichroism , Crystallization , Hippurates/chemical synthesis , Molecular Structure , Stereoisomerism
19.
J Org Chem ; 70(11): 4490-7, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15903330

ABSTRACT

Absolute asymmetric photocyclization of isopropylbenzophenone derivatives was achieved by means of a cocrystal approach. Three chiral salt crystals formed by carboxylic acid derivatives with achiral amines could be prepared by spontaneous crystallization. In the M-crystal of 4-(2,5-diisopropylbenzoyl)benzoic acid with 2,4-dichlorobenzylamine, a twofold helical arrangement occurs in a counterclockwise direction to generate the crystal chirality. Conversely, the clockwise helix exists alone in the P-crystal. Irradiation of the M-crystal at >290 nm caused highly enantioselective Norrish type II cyclization to give the (R,R)-cyclopentenol, (R)-cyclobutenol, and (R)-hydrol in a 6:3:1 molar ratio, resulting in successful absolute asymmetric synthesis, while irradiation at around 350 nm afforded the (R,R)-cyclopentenol as the sole product. The reaction proceeded via single-crystal-to-single-crystal transformation, and therefore the reaction path producing the (R,R)-cyclopentenol could be traced by X-ray crystallographic analysis before and after irradiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...