Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Exp Neurol ; 378: 114843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823675

ABSTRACT

Poststroke neuroinflammation exacerbates disease progression. [11C]PK11195-positron emission tomography (PET) imaging has been used to visualize neuroinflammation; however, its short half-life of 20 min limits its clinical use. [123I]CLINDE has a longer half-life (13h); therefore, [123I]CLINDE-single-photon emission computed tomography (SPECT) imaging is potentially more practical than [11C]PK11195-PET imaging in clinical settings. The objectives of this study were to 1) validate neuroinflammation imaging using [123I]CLINDE and 2) investigate the mechanisms underlying stroke in association with neuroinflammation using multimodal techniques, including magnetic resonance imaging (MRI), gas-PET, and histological analysis, in a rat model of ischemic stroke, that is, permanent middle cerebral artery occlusion (pMCAo). At 6 days post-pMCAo, [123I]CLINDE-SPECT considerably corresponded to the immunohistochemical images stained with the CD68 antibody (a marker for microglia/microphages), comparable to the level observed in [11C]PK11195-PET images. In addition, the [123I]CLINDE-SPECT images corresponded well with autoradiography images. Rats with severe infarcts, as defined by MRI, exhibited marked neuroinflammation in the peri-infarct area and less neuroinflammation in the ischemic core, accompanied by a substantial reduction in the cerebral metabolic rate of oxygen (CMRO2) in 15O-gas-PET. Rats with moderate-to-mild infarcts exhibited neuroinflammation in the ischemic core, where CMRO2 levels were mildly reduced. This study demonstrates that [123I]CLINDE-SPECT imaging is suitable for neuroinflammation imaging and that the distribution of neuroinflammation varies depending on the severity of infarction.


Subject(s)
Disease Models, Animal , Tomography, Emission-Computed, Single-Photon , Animals , Rats , Tomography, Emission-Computed, Single-Photon/methods , Male , Rats, Sprague-Dawley , Neuroinflammatory Diseases/diagnostic imaging , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Magnetic Resonance Imaging/methods , Stroke/diagnostic imaging , Stroke/pathology , Stroke/metabolism , Infarction, Middle Cerebral Artery/diagnostic imaging , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology
2.
Pharmaceutics ; 15(2)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36840011

ABSTRACT

PURPOSE: A new PET radiotracer 18F-AF78 showing great potential for clinical application has been reported recently. It belongs to a new generation of phenethylguanidine-based norepinephrine transporter (NET)-targeting radiotracers. Although many efforts have been made to develop NET inhibitors as antidepressants, systemic investigations of the structure-activity relationships (SARs) of NET-targeting radiotracers have rarely been performed. METHODS: Without changing the phenethylguanidine pharmacophore and 3-fluoropropyl moiety that is crucial for easy labeling, six new analogs of 18F-AF78 with different meta-substituents on the benzene-ring were synthesized and evaluated in a competitive cellular uptake assay and in in vivo animal experiments in rats. Computational modeling of these tracers was established to quantitatively rationalize the interaction between the radiotracers and NET. RESULTS: Using non-radiolabeled reference compounds, a competitive cellular uptake assay showed a decrease in NET-transporting affinity from meta-fluorine to iodine (0.42 and 6.51 µM, respectively), with meta-OH being the least active (22.67 µM). Furthermore, in vivo animal studies with radioisotopes showed that heart-to-blood ratios agreed with the cellular experiments, with AF78(F) exhibiting the highest cardiac uptake. This result correlates positively with the electronegativity rather than the atomic radius of the meta-substituent. Computational modeling studies revealed a crucial influence of halogen substituents on the radiotracer-NET interaction, whereby a T-shaped π-π stacking interaction between the benzene-ring of the tracer and the amino acid residues surrounding the NET binding site made major contributions to the different affinities, in accordance with the pharmacological data. CONCLUSION: The SARs were characterized by in vitro and in vivo evaluation, and computational modeling quantitatively rationalized the interaction between radiotracers and the NET binding site. These findings pave the way for further evaluation in different species and underline the potential of AF78(F) for clinical application, e.g., cardiac innervation imaging or molecular imaging of neuroendocrine tumors.

3.
Theranostics ; 12(9): 4446-4458, 2022.
Article in English | MEDLINE | ID: mdl-35673571

ABSTRACT

Background: Radiolabeled agents that are substrates for the norepinephrine transporter (NET) can be used to quantify cardiac sympathetic nervous conditions and have been demonstrated to identify high-risk congestive heart failure (HF) patients prone to arrhythmic events. We aimed to fully characterize the kinetic profile of the novel 18F-labeled NET probe AF78 for PET imaging of the cardiac sympathetic nervous system (SNS) among various species. Methods:18F-AF78 was compared to norepinephrine (NE) and established SNS radiotracers by employing in vitro cell assays, followed by an in vivo PET imaging approach with healthy rats, rabbits and nonhuman primates (NHPs). Additionally, chase protocols were performed in NHPs with NET inhibitor desipramine (DMI) and the NE releasing stimulator tyramine (TYR) to investigate retention kinetics in cardiac SNS. Results: Relative to other SNS radiotracers, 18F-AF78 showed higher transport affinity via NET in a cell-based competitive uptake assay (IC50 0.42 ± 0.14 µM), almost identical to that of NE (IC50, 0.50 ± 0.16 µM, n.s.). In rabbits and NHPs, initial cardiac uptake was significantly reduced by NET inhibition. Furthermore, cardiac tracer retention was not affected by a DMI chase protocol but was markedly reduced by intermittent TYR chase, thereby suggesting that 18F-AF78 is stored and can be released via the synaptic vesicular turnover process. Computational modeling hypothesized the formation of a T-shaped π-π stacking at the binding site, suggesting a rationale for the high affinity of 18F-AF78. Conclusion:18F-AF78 demonstrated high in vitro NET affinity and advantageous in vivo radiotracer kinetics across various species, indicating that 18F-AF78 is an SNS imaging agent with strong potential to guide specific interventions in cardiovascular medicine.


Subject(s)
Norepinephrine Plasma Membrane Transport Proteins , Radiopharmaceuticals , Animals , Biomarkers , Fluorine Radioisotopes , Humans , Molecular Imaging , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Positron-Emission Tomography/methods , Rabbits , Rats
4.
Ann Transl Med ; 9(9): 821, 2021 May.
Article in English | MEDLINE | ID: mdl-34268434

ABSTRACT

Recent years have witnessed a rapidly expanding use of artificial intelligence and machine learning in medical imaging. Generative adversarial networks (GANs) are techniques to synthesize images based on artificial neural networks and deep learning. In addition to the flexibility and versatility inherent in deep learning on which the GANs are based, the potential problem-solving ability of the GANs has attracted attention and is being vigorously studied in the medical and molecular imaging fields. Here this narrative review provides a comprehensive overview for GANs and discuss their usefulness in medical and molecular imaging on the following topics: (I) data augmentation to increase training data for AI-based computer-aided diagnosis as a solution for the data-hungry nature of such training sets; (II) modality conversion to complement the shortcomings of a single modality that reflects certain physical measurement principles, such as from magnetic resonance (MR) to computed tomography (CT) images or vice versa; (III) de-noising to realize less injection and/or radiation dose for nuclear medicine and CT; (IV) image reconstruction for shortening MR acquisition time while maintaining high image quality; (V) super-resolution to produce a high-resolution image from low-resolution one; (VI) domain adaptation which utilizes knowledge such as supervised labels and annotations from a source domain to the target domain with no or insufficient knowledge; and (VII) image generation with disease severity and radiogenomics. GANs are promising tools for medical and molecular imaging. The progress of model architectures and their applications should continue to be noteworthy.

5.
Sci Rep ; 11(1): 10896, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035416

ABSTRACT

Stem cell therapy holds great promise for tissue regeneration and cancer treatment, although its efficacy is still inconclusive and requires further understanding and optimization of the procedures. Non-invasive cell tracking can provide an important opportunity to monitor in vivo cell distribution in living subjects. Here, using a combination of positron emission tomography (PET) and in vitro 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) direct cell labelling, the feasibility of engrafted stem cell monitoring was tested in multiple animal species. Human mesenchymal stem cells (MSCs) were incubated with phosphate-buffered saline containing [18F]FDG for in vitro cell radiolabelling. The pre-labelled MSCs were administrated via peripheral vein in a mouse (n = 1), rats (n = 4), rabbits (n = 4) and non-human primates (n = 3), via carotid artery in rats (n = 4) and non-human primates (n = 3), and via intra-myocardial injection in rats (n = 5). PET imaging was started 10 min after cell administration using a dedicated small animal PET system for a mouse and rats. A clinical PET system was used for the imaging of rabbits and non-human primates. After MSC administration via peripheral vein, PET imaging revealed intense radiotracer signal from the lung in all tested animal species including mouse, rat, rabbit, and non-human primate, suggesting administrated MSCs were trapped in the lung tissue. Furthermore, the distribution of the PET signal significantly differed based on the route of cell administration. Administration via carotid artery showed the highest activity in the head, and intra-myocardial injection increased signal from the heart. In vitro [18F]FDG MSC pre-labelling for PET imaging is feasible and allows non-invasive visualization of initial cell distribution after different routes of cell administration in multiple animal models. Those results highlight the potential use of that imaging approach for the understanding and optimization of stem cell therapy in translational research.


Subject(s)
Cell Tracking/methods , Fluorodeoxyglucose F18/administration & dosage , Mesenchymal Stem Cells/cytology , Positron-Emission Tomography/methods , Administration, Intravenous , Animals , Cells, Cultured , Feasibility Studies , Female , Humans , Injections, Intra-Arterial , Injections, Intramuscular , Macaca mulatta , Male , Mesenchymal Stem Cells/chemistry , Mice , Models, Animal , Molecular Imaging , Rabbits , Rats , Stem Cell Transplantation , Tissue Distribution
6.
J Labelled Comp Radiopharm ; 64(1): 40-46, 2021 01.
Article in English | MEDLINE | ID: mdl-33063893

ABSTRACT

2-Deoxy-2-[18 F]fluorosorbitol (18 F-FDS) has become increasingly useful in functional renal imaging. FDS is synthesized by the one-step reduction of 2-deoxy-2-[18 F]fluoroglucose (18 F-FDG). To develop a more simple and rapid procedure for 18 F-FDS synthesis, we examined reduction reactions with solid-supported NaBH4 . Synthetic yields using BH4 -IRA400 (polymer-based matrix) and NaBH4 -Al2 O3 (clay-based matrix) as solid-supported reagents were compared. NaBH4 -Al2 O3 was found to be far superior to BH4 -IRA400 in the FDG reduction reaction. IRA 400 was not suitable for this reaction because it adsorbs FDG, in addition to glucose, with no FDS synthesized when using BH4 -IRA400. By contrast, NaBH4 -Al2 O3 only required a filtration as workup, affording FDS in 90% yield after a total of 10 min. NaBH4 on alumina was readily consumed in the reaction within 1 min, regardless of the amount used, by simply stirring with a vortex mixer. Complicated procedures, such as microwave irradiation, were not necessary. This simple operation will allow kit formulation and is suitable for radiosynthesis. In conclusion, clay-supported reagents showed low absorption and were time saving, which are highly compatible with 18 F-FDS synthesis.


Subject(s)
Aluminum Oxide , Borohydrides , Fluorodeoxyglucose F18 , Positron-Emission Tomography
7.
Bioorg Med Chem Lett ; 30(17): 127400, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32738964

ABSTRACT

Glucose transporter 2 (GLUT2) is involved in glucose uptake by hepatocytes, pancreatic beta cells, and absorptive cells in the intestine and proximal tubules in the kidney. Pancreatic GLUT2 also plays an important role in the mechanism of glucose-stimulated insulin secretion. In this study, novel Fluorine-18-labeled streptozotocin (STZ) derivatives were synthesized to serve as glycoside analogs for in-vivo GLUT2 imaging. Fluorine was introduced to hexyl groups at the 3'-positions of the compounds, and we aimed to synthesize compounds that were more stable than STZ. The nitroso derivatives exhibited relatively good stability during purification and purity analysis after radiosynthesis. We then evaluated the compounds in PET imaging and ex-vivo biodistribution studies. We observed high levels of radioactivity in the liver and kidney, which indicated accumulation in these organs within 5 min of administration. In contrast, the denitroso derivatives accumulated only in the kidney and bladder shortly after administration. Compounds with nitroso groups are thus expected to accumulate in GLUT2-expressing organs, and the presence of a nitroso group is essential for in-vivo GLUT2 imaging.


Subject(s)
Positron-Emission Tomography , Radiopharmaceuticals/chemical synthesis , Streptozocin/chemistry , Animals , Fluorine Radioisotopes/chemistry , Glucose Transporter Type 2/metabolism , Kinetics , Mice , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/metabolism , Streptozocin/chemical synthesis , Streptozocin/metabolism , Tissue Distribution
8.
J Neurol Sci ; 415: 116939, 2020 08 15.
Article in English | MEDLINE | ID: mdl-32480076

ABSTRACT

The early initiation of robot-assisted gait training in patients with acute stroke could promote neuroplasticity. The aim of this study was to clarify the microstructural changes of white matter associated with gait training using Hybrid Assistive Limb (HAL) by diffusion tensor imaging (DTI). Patients with first-ever stroke and requiring a walking aid started gait training within 1 week of stroke onset. The patients were quasi-randomly assigned either to the conventional physical therapy (CPT) group or gait training using HAL (HAL) group. Motor function and DTI were examined at baseline and after 3-5 months. Voxel-based statistical analyses of fractional anisotropy (FA) images were performed using diffusion metric voxel-wise analyses. Volume of interest (VOI)-based analyses were used to assess changes in FA (ΔFA). Twenty-seven patients (17 in the CPT group and 10 in the HAL group) completed the study. There were improvements in motor function and independency in the CPT and HAL groups (p < .001). Compared to baseline, there were decreases in FA in the ipsi-lesional cerebral peduncle in the CPT group (p < .001) and increases in the contra-lesional rostrum of the corpus callosum in the HAL group (p < .001) at the second assessment, consistent with the mean ΔFA in each group from VOI analysis (CPT/HAL: cerebral peduncle, -0.066/-0.027, p = .027; corpus callosum, 0.002/0.042, p < .001). Gait training using HAL initiated within 1 week after stroke onset facilitated the recovery of inter-hemispheric communication and prevented the progression of Wallerian degeneration of the affected pyramidal tract.


Subject(s)
Stroke , White Matter , Diffusion Tensor Imaging , Exercise Therapy , Gait , Humans , Stroke/complications , Stroke/diagnostic imaging , Stroke/therapy , White Matter/diagnostic imaging
9.
Mol Imaging Biol ; 22(3): 602-611, 2020 06.
Article in English | MEDLINE | ID: mdl-31332629

ABSTRACT

PURPOSE: Taking full advantage of positron emission tomography (PET) technology, fluorine-18-labelled radiotracers targeting norepinephrine transporter (NET) have potential applications in the diagnosis and assessment of cardiac sympathetic nerve conditions as well as the delineation of neuroendocrine tumours. However, to date, none have been used clinically. Drawbacks of currently reported radiotracers include suboptimal kinetics and challenging radiolabelling procedures. PROCEDURES: We developed a novel fluorine-18-labelled radiotracer targeting NET, AF78, with efficient one-step radiolabelling based on the phenethylguanidine structure. Radiosynthesis of AF78 was undertaken, followed by validation in cell uptake studies, autoradiography, and in vivo imaging in rats. RESULTS: [18F]AF78 was successfully synthesized with 27.9 ± 3.1 % radiochemical yield, > 97 % radiochemical purity and > 53.8 GBq/mmol molar activity. Cell uptake studies demonstrated essentially identical affinity for NET as norepinephrine and meta-iodobenzylgaunidine. Both ex vivo autoradiography and in vivo imaging in rats showed homogeneous and specific cardiac uptake. CONCLUSIONS: The new PET radiotracer [18F]AF78 demonstrated high affinity for NET and favourable biodistribution in rats. A structure-activity relationship between radiotracer structures and affinity for NET was revealed, which may serve as the basis for the further design of NET targeting radiotracers with favourable features.


Subject(s)
Fluorine Radioisotopes/pharmacokinetics , Neuroblastoma/diagnostic imaging , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Phenformin/analogs & derivatives , Positron-Emission Tomography/methods , Radiopharmaceuticals/pharmacokinetics , Animals , Autoradiography/methods , Cell Line, Tumor , Fluorine Radioisotopes/chemistry , Male , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phenformin/chemistry , Phenformin/pharmacokinetics , Radiochemistry/methods , Radiopharmaceuticals/chemical synthesis , Rats , Rats, Wistar , Tissue Distribution
11.
Eur J Nucl Med Mol Imaging ; 46(9): 1773-1786, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31144061

ABSTRACT

Although single-photon-emitting radiotracers have long been the standard for renal functional molecular imaging, recent years have seen the development of positron emission tomography (PET) agents for this application. We provide an overview of renal radionuclide PET radiotracers, in particular focusing on novel 18F-labelled and 68Ga-labelled agents. Several reported PET imaging probes allow assessment of glomerular filtration rate, such as [68Ga]ethylenediaminetetraacetic acid ([68Ga]EDTA), [68Ga]IRDye800-tilmanocept and 2-deoxy-2-[18F]fluorosorbitol ([18F]FDS)). The diagnostic performance of [68Ga]EDTA has already been demonstrated in a clinical trial. [68Ga]IRDye800-tilmanocept shows receptor-mediated binding to glomerular mesangial cells, which in turn may allow the monitoring of progression of diabetic nephropathy. [18F]FDS shows excellent kidney extraction and excretion in rats and, as has been shown in the first study in humans. Further, due to its simple one-step radiosynthesis via the most frequently used PET radiotracer 2-deoxy-2-[18F]fluoro-D-glucose, [18F]FDS could be available at nearly every PET centre. A new PET radiotracer has also been introduced for the effective assessment of plasma flow in the kidneys: Re(CO)3-N-([18F]fluoroethyl)iminodiacetic acid (Re(CO)3([18F]FEDA)). This compound demonstrates similar pharmacokinetic properties to its 99mTc-labelled analogue [99mTc](CO)3(FEDA). Thus, if there is a shortage of molybdenum-99, Re(CO)3([18F]FEDA would allow direct comparison with previous studies with 99mTc. The PET radiotracers for renal imaging reviewed here allow thorough evaluation of kidney function, with the tremendous advantage of precise anatomical coregistration with simultaneously acquired CT images and rapid three-dimensional imaging capability.


Subject(s)
Kidney/diagnostic imaging , Positron-Emission Tomography/methods , Radioactive Tracers , Animals , Humans , Tomography, Emission-Computed, Single-Photon
12.
Psychiatry Res Neuroimaging ; 287: 49-55, 2019 05 30.
Article in English | MEDLINE | ID: mdl-30978475

ABSTRACT

The neural basis of recovery from a depressive state remains poorly understood. The main purpose of this study was to determine the neural basis of vulnerability/resilience to depression in stroke patients in terms of changes in regional microstructure. The study included 20 individuals with acute ischaemic stroke. Symptoms of depression were assessed, and the intraneurite volume fraction and neurite orientation-dispersion index (ODI) were evaluated by a multi-shell diffusion imaging and neurite-orientation dispersion and density imaging model. Patients underwent follow-up examinations after 2 months and were classified into depression improvement and depression deterioration groups. A significant interaction effect of group × time on the ODI was shown by voxel-based analysis in the posterior cingulate cortex (PCC). The ODI change in the PCC was negatively correlated with the change in the depression scale scores at the 2-month time point. The increase in ODI in the PCC that occurred during the 2-month interval was thought to be associated with decreased depressive symptom scores. As the ODI represents the pattern of sprawling dendrite progression, our findings indicate that the dendritic complexity of the PCC is a substrate for recovery in individuals who experienced post-stroke psychosocial and biological stress.


Subject(s)
Brain Ischemia/complications , Dendrites/pathology , Depression/etiology , Depression/physiopathology , Stroke/complications , Adult , Disease Progression , Female , Gyrus Cinguli , Humans , Male , Middle Aged , Neurites , Pilot Projects
13.
EJNMMI Phys ; 5(1): 37, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30569426

ABSTRACT

BACKGROUND: 15O-oxygen inhalation PET is unique in its ability to provide fundamental information regarding cerebral hemodynamics and energy metabolism in man. However, the use of 15O-oxygen has been limited in a clinical environment largely attributed to logistical complexity, in relation to a long study period, and the need to produce and inhale three sets of radiopharmaceuticals. Despite the recent works that enabled shortening of the PET examination period, radiopharmaceutical production has still been a limiting factor. This study was aimed to evaluate a recently developed radiosynthesis/inhalation system that automatically supplies a series of 15O-labeled gaseous radiopharmaceuticals of C15O, 15O2, and C15O2 at short intervals. METHODS: The system consists of a radiosynthesizer which produces C15O, 15O2, and C15O2; an inhalation controller; and an inhalation/scavenging unit. All three parts are controlled by a common sequencer, enabling automated production and inhalation at intervals less than 4.5 min. The gas inhalation/scavenging unit controls to sequentially supply of qualified radiopharmaceuticals at given radioactivity for given periods at given intervals. The unit also scavenges effectively the non-inhaled radioactive gases. Performance and reproducibility are evaluated. RESULTS: Using an 15O-dedicated cyclotron with deuteron of 3.5 MeV at 40 µA, C15O, 15O2, and C15O2 were sequentially produced at a constant rate of 1400, 2400, and 2000 MBq/min, respectively. Each of radiopharmaceuticals were stably inhaled at < 4.5 min intervals with negligible contamination from the previous supply. The two-hole two-layered face mask with scavenging device minimized the gaseous radioactivity surrounding subject's face, while maintaining the normocapnia during examination periods. Quantitative assessment of net administration doses could be assessed using a pair of radio-detectors at inlet and scavenging tubes, as 541 ± 149, 320 ± 103, 523 ± 137 MBq corresponding to 2-min supply of 2574 ± 255 MBq for C15O, and 1-min supply of 2220 ± 766 and 1763 ± 174 for 15O2 and C15O2, respectively. CONCLUSIONS: The present system allowed for automated production and inhalation of series of 15O-labeled radiopharmaceuticals as required in the rapid 15O-Oxygen PET protocol. The production and inhalation were reproducible and improved logistical complexity, and thus the use of 15O-oxygen might have become practically applicable in clinical environments.

14.
Proc Natl Acad Sci U S A ; 115(41): 10511-10516, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30249662

ABSTRACT

Effective delivery of drug carriers selectively to the kidney is challenging because of their uptake by the reticuloendothelial system in the liver and spleen, which limits effective treatment of kidney diseases and results in side effects. To address this issue, we synthesized l-serine (Ser)-modified polyamidoamine dendrimer (PAMAM) as a potent renal targeting drug carrier. Approximately 82% of the dose was accumulated in the kidney at 3 h after i.v. injection of 111In-labeled Ser-PAMAM in mice, while i.v. injection of 111In-labeled unmodified PAMAM, l-threonine modified PAMAM, and l-tyrosine modified PAMAM resulted in kidney accumulations of 28%, 35%, and 31%, respectively. Single-photon emission computed tomography/computed tomography (SPECT/CT) images also indicated that 111In-labeled Ser-PAMAM specifically accumulated in the kidneys. An intrakidney distribution study showed that fluorescein isothiocyanate-labeled Ser-PAMAM accumulated predominantly in renal proximal tubules. Results of a cellular uptake study of Ser-PAMAM in LLC-PK1 cells in the presence of inhibitors [genistein, 5-(N-ethyl-N-isopropyl)amiloride, and lysozyme] revealed that caveolae-mediated endocytosis, micropinocytosis, and megalin were associated with the renal accumulation of Ser-PAMAM. The efficient renal distribution and angiotensin-converting enzyme (ACE) inhibition effect of captopril (CAP), an ACE inhibitor, was observed after i.v. injection of the Ser-PAMAM-CAP conjugate. These findings indicate that Ser-PAMAM is a promising renal targeting drug carrier for the treatment of kidney diseases. Thus, the results of this study demonstrate efficient renal targeting of a drug carrier via Ser modification.


Subject(s)
Captopril/pharmacology , Dendrimers/administration & dosage , Drug Carriers/administration & dosage , Drug Delivery Systems , Kidney Diseases/drug therapy , Polyamines/chemistry , Serine/chemistry , Angiotensin-Converting Enzyme Inhibitors/administration & dosage , Angiotensin-Converting Enzyme Inhibitors/chemistry , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Captopril/administration & dosage , Captopril/chemistry , Dendrimers/chemistry , Drug Carriers/chemistry , Mice
15.
Nucl Med Biol ; 64-65: 28-33, 2018.
Article in English | MEDLINE | ID: mdl-30015093

ABSTRACT

INTRODUCTION: Lactate could serve as an energy source and signaling molecule in the brain, although there is insufficient in vivo evidence to support this possibility. Here we aimed to use a one-pot enzymatic synthetic procedure to synthesize l-[3-11C]lactate that can be used to evaluate chemical forms in the blood after intravenous administration, and as a probe for pharmacokinetic analysis of lactate metabolism in in vivo positron emission tomography (PET) scans with normal and fasted rats. METHODS: Racemic [3-11C]alanine obtained from 11C-methylation of a precursor and deprotection was reacted with an enzyme mixture consisting of alanine racemase, d-amino acid oxidase, catalase, and lactate dehydrogenase to yield l-[3-11C]lactate via [3-11C]pyruvate. The optical purity was measured by HPLC. Radioactive chemical forms in the arterial blood of Sprague Dawley rats with or without insulin pretreatment were evaluated by HPLC 10 min after bolus intravenous injection of l-[3-11C]lactate. PET scans were performed on normal and fasted rats administered with l-[3-11C]lactate. RESULTS: l-[3-11C]Lactate was synthesized within 50 min and had decay corrected radiochemical yield, radiochemical purity, and optical purity of 13.4%, >95%, and >99%, respectively. The blood radioactivity peaked immediately after l-[3-11C]lactate injection, rapidly decreased to the minimum value within 90 s, and slowly cleared thereafter. HPLC analysis of blood samples revealed the presence of [11C]glucose (78.9%) and l-[3-11C]lactate (12.1%) 10 min after administration of l-[3-11C]lactate. Insulin pretreatment partly inhibited glyconeogenesis conversion leading to 55.4% as [11C]glucose and 38.9% as l-[3-11C]lactate simultaneously. PET analysis showed a higher SUV in the brain tissue of fasted rats relative to non-fasted rats. CONCLUSIONS: We successfully synthesized l-[3-11C]lactate in a one-pot enzymatic synthetic procedure and showed rapid metabolic conversion of l-[3-11C]lactate to [11C]glucose in the blood. PET analysis of l-[3-11C]lactate indicated the possible presence of active lactate usage in rat brains in vivo.


Subject(s)
Brain/metabolism , Carbon Radioisotopes , Enzymes/metabolism , Lactic Acid/chemical synthesis , Lactic Acid/metabolism , Animals , Brain/diagnostic imaging , Chemistry Techniques, Synthetic , Lactic Acid/pharmacokinetics , Male , Positron-Emission Tomography , Radiochemistry , Rats , Rats, Sprague-Dawley , Tissue Distribution
16.
Nucl Med Mol Imaging ; 52(2): 144-153, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29662563

ABSTRACT

PURPOSE: Oxidized low-density lipoprotein (oxLDL) plays a key role in endothelial dysfunction, vascular inflammation, and atherogenesis. The aim of this study was to assess blood clearance and in vivo kinetics of radiolabeled oxLDL in mice. METHODS: We synthesized 123I-oxLDL by the iodine monochloride method, and performed an uptake study in CHO cells transfected with lectin-like oxLDL receptor-1 (LOX-1). In addition, we evaluated the consistency between the 123I-oxLDL autoradiogram and the fluorescence image of DiI-oxLDL after intravenous injection for both spleen and liver. Whole-body dynamic planar images were acquired 10 min post injection of 123I-oxLDL to generate regional time-activity curves (TACs) of the liver, heart, lungs, kidney, head, and abdomen. Regional radioactivity for those excised tissues as well as the bladder, stomach, gut, and thyroid were assessed using a gamma counter, yielding percent injected dose (%ID) and dose uptake ratio (DUR). The presence of 123I-oxLDL in serum was assessed by radio-HPLC. RESULTS: The cellular uptakes of 123I-oxLDL were identical to those of DiI-oxLDL, and autoradiograms and fluorescence images also exhibited consistent distributions. TACs after injection of 123I-oxLDL demonstrated extremely fast kinetics. The radioactivity uptake at 10 min post-injection was highest in the liver (40.8 ± 2.4% ID). Notably, radioactivity uptake was equivalent throughout the rest of the body (39.4 ± 2.7% ID). HPLC analysis revealed no remaining 123I-oxLDL or its metabolites in the blood. CONCLUSION: 123I-OxLDL was widely distributed not only in the liver, but also throughout the whole body, providing insight into the pathophysiological effects of oxLDL.

17.
Sci Rep ; 8(1): 1347, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29358724

ABSTRACT

As matrix metalloproteinases (MMPs), especially MMP-9 and MMP-12 are involved in the pathological processes associated with chronic obstructive pulmonary disease (COPD), we developed a novel radiofluorinated probe, 18F-IPFP, for MMPs-targeted positron emission tomography (PET). 18F-IPFP was designed by iodination of MMP inhibitor to enhance the affinity, and labelled with a compact prosthetic agent, 4-nitrophenyl 2-18F-fluoropropionate (18F-NFP). As a result, IPFP demonstrated the highest affinity toward MMP-12 (IC50 = 1.5 nM) among existing PET probes. A COPD model was employed by exposing mice to cigarette smoke and the expression levels of MMP-9 and MMP-12 were significantly increased in the lungs. Radioactivity accumulation in the lungs 90 min after administration of 18F-IPFP was 4× higher in COPD mice than normal mice, and 10× higher than in the heart, muscle, and blood. Ex vivo PET confirmed the radioactivity distribution in the tissues and autoradiography analysis demonstrated that accumulation differences in the lungs of COPD mice were 2× higher than those of normal mice. These results suggest that 18F-IPFP is a promising probe for pulmonary imaging and expected to be applied to various MMP-related diseases for early diagnosis, tracking of therapeutic effects, and new drug development in both preclinical and clinical applications.


Subject(s)
Matrix Metalloproteinase Inhibitors/administration & dosage , Metalloendopeptidases/metabolism , Positron-Emission Tomography/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Radiopharmaceuticals/chemical synthesis , Animals , Azides , Disease Models, Animal , Humans , Lung/diagnostic imaging , Lung/metabolism , Matrix Metalloproteinase Inhibitors/chemistry , Mice , Pulmonary Disease, Chronic Obstructive/etiology , Pulmonary Disease, Chronic Obstructive/metabolism , Radiopharmaceuticals/chemistry , Smoking/adverse effects
19.
Phys Med Biol ; 62(10): 4017-4030, 2017 05 21.
Article in English | MEDLINE | ID: mdl-28287079

ABSTRACT

Monte Carlo simulation is widely applied to evaluate the performance of three-dimensional positron emission tomography (3D-PET). For accurate scatter simulations, all components that generate scatter need to be taken into account. The aim of this work was to identify the components that influence scatter. The simulated geometries of a PET scanner were: a precisely reproduced configuration including all of the components; a configuration with the bed, the tunnel and shields; a configuration with the bed and shields; and the simplest geometry with only the bed. We measured and simulated the scatter fraction using two different set-ups: (1) as prescribed by NEMA-NU 2007 and (2) a similar set-up but with a shorter line source, so that all activity was contained only inside the field-of-view (FOV), in order to reduce influences of components outside the FOV. The scatter fractions for the two experimental set-ups were, respectively, 45% and 38%. Regarding the geometrical configurations, the former two configurations gave simulation results in good agreement with the experimental results, but simulation results of the simplest geometry were significantly different at the edge of the FOV. From the simulation of the precise configuration, the object (scatter phantom) was the source of more than 90% of the scatter. This was also confirmed by visualization of photon trajectories. Then, the bed and the tunnel were mainly the sources of the rest of the scatter. From the simulation results, we concluded that the precise construction was not needed; the shields, the tunnel, the bed and the object were sufficient for accurate scatter simulations.


Subject(s)
Imaging, Three-Dimensional , Monte Carlo Method , Positron-Emission Tomography/instrumentation , Scattering, Radiation , Phantoms, Imaging , Photons
20.
Ann Nucl Med ; 31(3): 227-234, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28220365

ABSTRACT

OBJECTIVE: 11C-Pittsburgh compound-B (11C-PIB) positron emission tomography (PET) is used to visualize and quantify amyloid deposition in the brain cortex in pathological conditions such as Alzheimer's disease (AD). Intense 11C-PIB retention is also observed in the white matter (WM) of both healthy individuals and AD patients. However, the clinical implications of this retention in brain WM have not been clarified. We investigated the relationship between the extent of white matter lesions (WMLs) and the binding potential of 11C-PIB (BPND) in the WM in patients with hypertensive small vessel disease. We further examined the relationship between the extent of WMLs and BPND in WML and in normal-appearing white matter (NAWM). METHODS: Twenty-one hypertensive vasculopathy patients, without AD and major cerebral arterial stenosis and/or occlusion, were enrolled (9 women, 68 ± 7 years). Regions of WML and NAWM were extracted using magnetization-prepared rapid gradient-echo and fluid-attenuated inversion recovery of magnetic resonance images. Volumes of interest (VOIs) were set in the cortex-subcortex, basal ganglia, and centrum semiovale (CS). BPND in the cortex-subcortex, basal ganglia, CS, WML, and NAWM were estimated on 11C-PIB PET using Logan graphical analysis with cerebellar regions as references. The relationships between WML volume and BPND in each region were examined by linear regression analysis. RESULTS: BPND was higher in the CS and basal ganglia than in the cortex-subcortex regions. WML volume had a significant inverse correlation with BPND in the CS (Slope = -0.0042, R 2 = 0.44, P < 0.01). For intra WM comparison, BPND in NAWM was significantly higher than that in WML. In addition, although there were no correlations between WML volume and BPND in WML, WML volume was significantly correlated inversely with BPND in NAWM (Slope = -0.0017, R 2 = 0.26, P = 0.02). CONCLUSIONS: 11C-PIB could be a marker of not only cortical amyloid-ß deposition but also WM injury accompanying the development of WMLs in hypertensive small vessel disease.


Subject(s)
Brain Diseases/diagnostic imaging , Hypertension/diagnostic imaging , Positron-Emission Tomography , White Matter/diagnostic imaging , White Matter/injuries , Aged , Aniline Compounds , Benzothiazoles , Brain/metabolism , Brain Mapping/methods , Carbon Radioisotopes/chemistry , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen Radioisotopes/chemistry , Thiazoles
SELECTION OF CITATIONS
SEARCH DETAIL
...