Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Space Res (Amst) ; 30: 45-54, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34281664

ABSTRACT

In a study on primates (Macaca mulatta), neurobiological and radiobiological effects have been studied of the synchronous combined action of 7-day antiorthostatic hypokinesia and exposure of the monkeys' head first to γ-rays during 24 h and then to accelerated 12C ions. The neurobiological effects were evaluated by the cognitive functions which model the basic elements of operator activity and the concentration of monoamines and their metabolites in peripheral blood. The radiobiological effects were evaluated by the chromosomal aberration and DNA double-strand break (DSB) yield in peripheral blood lymphocytes. The results of the cognitive function research show that the typological features of the animals' higher nervous activity are the prevailing factor that determines changes in these functions. The monkey of the strong balanced type effectively retained its cognitive functions after the exposures, while in the weak unbalanced type animals these functions were impaired. These changes went along with a decrease in the concentration of monoamines and their metabolites and an increase in the DNA DSB and chromosomal aberration yield in lymphocytes.


Subject(s)
Gravitation , Lymphocytes , Animals , Cognition , Cytogenetic Analysis , Haplorhini
2.
Mutat Res ; 803-805: 35-41, 2017 10.
Article in English | MEDLINE | ID: mdl-28910671

ABSTRACT

Fundamental research on the harmful effects of ionizing radiation on living cells continues to be of great interest. Recently, priority has been given to the study of high-charge and high-energy (HZE) ions that comprise a substantial part of the galactic cosmic ray (GCR) spectra that would be encountered during long-term space flights. Moreover, predictions of the delayed genetic effects of high linear energy transfer (LET) exposure is becoming more important as heavy ion therapy use is increasing. This work focuses mainly on the basic research on the delayed effects of HZE ions on V79 Chinese hamster cells, with emphasis on the induction of HPRT mutations after prolonged expression times (ET). The research was conducted under various irradiation conditions with accelerated ions 18O (E=35.2MeV/n), 20Ne (E=47.7MeV/n and 51.8MeV/n), and 11B (E=32.4MeV/n), with LET in the range from 49 to 149 keV/µm and with 60Co γ-rays. The HPRT mutant fractions (MF) were detected in irradiated cells in regular intervals during every cell culture recultivation (every 3days) up to approximately 40days (70-80 generations) after irradiation. The MF maximum was reached at different ET depending on ionizing radiation characteristics. The position of the maximum was shifting towards longer ET with increasing LET. We speculate that the delayed mutations are created de novo and that they are the manifestation of genomic instability. Although the exact mechanisms involved in genomic instability initiation are yet to be identified, we hypothesize that differences in induction of delayed mutations by radiations with various LET values are related to variations in energy deposition along the particle track. A dose dependence of mutation yield is discussed as well.


Subject(s)
Gamma Rays , Heavy Ions/adverse effects , Hypoxanthine Phosphoribosyltransferase/genetics , Mutation , Animals , Cell Line , Cricetinae , Cricetulus , Dose-Response Relationship, Radiation , Fibroblasts/radiation effects , Genomic Instability/radiation effects , Linear Energy Transfer
SELECTION OF CITATIONS
SEARCH DETAIL
...