Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37010684

ABSTRACT

In this work, post-synthetic effective acid (HNO3) and base (NaOH) etching technique are used to create hierarchical mordenite having different pore structure. The powder X-ray diffraction (P-XRD) technique was used to confirm the crystalline structure of the base-modified and acid-modified mordenite. Field emission-scanning electron microscope (FE-SEM) was employed to confirm the structural morphology of the materials. The modified mordenite was further characterised by inductive coupled plasma-optical emission spectrometry (ICP-OES), N2 adsorption-desorption isotherms, thermogravimetric analysis (TGA), and acid-base titration, to confirm the structural integrity, presence of active acidic sites, and other vital parameters. The structure was well conserved after the change, as evidenced by the characterisation. The toluene benzylation with benzyl alcohol using hierarchical mordenite and H-mordenite produced mono-benzylated toluene. Comparison between acid treated, base treated, and H-mordenite was done. All samples were catalytically active as proved by the catalytic result in the benzylation reaction. The results show that the base alteration dramatically enhances the mesoporous surface area of H-mordenite. Furthermore, the acid-treated mordenite had the highest benzyl alcohol conversion (75%), but the base-modified mordenite had benzyl alcohol conversion of 73% with the highest mono-benzylated toluene selectivity (61%). The process was further optimised by varying the reaction temperature, duration, and catalyst quantity. Gas chromatography (GC) was used to evaluate the reaction products and gas chromatography-mass spectrometry (GC-MS) was used to confirm them. Introduction of mesoporosity in the microporous mordenite was found to have significant effect on their catalytic activity.

2.
Environ Sci Pollut Res Int ; 30(16): 46159-46174, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36710314

ABSTRACT

The generation of wastewater has increased rapidly with the expansion of industries, hence, posing a risk to human health and the environment. The development of novel materials and technologies for textile wastewater treatment is constantly evolving. In this work, the photocatalytic degradation of methylene blue employing ZSM-5 zeolite-doped polyaniline composites is presented. To fabricate ZSM-5-based polyaniline (PANI) composites, the simple approach of in situ oxidative polymerization has been adopted. Different weight ratios of ZSM-5 have been used for the synthesis, and samples have been labelled as PAZe-1, PAZe-5, and PAZe-10. Different characterization techniques were used to characterize the prepared composites, including field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and thermo-gravimetry analysis (TGA). The photocatalytic performance of polyaniline, ZSM-5, and their composites was assessed by monitoring the degradation of methylene blue in the presence of visible light. Degradation results of the polyaniline-doped composites were found to be better than that of the polyaniline alone. When the photocatalytic efficiencies of different composites were compared, the PAZe-1 showed the best performance, with 99.9% degradation efficiency after 210 min of irradiation, while PANI, PAZe-5, PAZe-10, and ZSM-5 show 38%, 82%, 71%, and 99% removal efficiency. Apart from methylene blue, the composite PAZe-1 was further explored for the degradation of other organic pollutants such as methyl orange, chlorpyrifos, 2,4-dichlorophenoxy acetic acid, and p-nitroaniline. To determine the reactive species involved in the photocatalysis mechanism, scavenger studies were performed.


Subject(s)
Methylene Blue , Zeolites , Humans , Spectroscopy, Fourier Transform Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...