Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 401(4): 1263-71, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21735067

ABSTRACT

The quality of the determination of compound-specific isotopic content at natural abundance by gas chromatography-isotope ratio measurement-mass spectrometry (GC-irm-MS) relies on the stability of the voltage generated by the ion detector Faraday cages. The application of GC-irm-MS to the determination of δ(13)C (‰) and δ(15)N (‰) is now routine. However, for numerous applications, it is necessary to determine both the isotope content (δ(15)N) and the quantity (in micromoles) of analyte present. We now show that it is possible for nitrogen-containing compounds to measure how much analyte is present with an irm mass spectrometer linked to a GC by exploiting the integrated N(2) total ion current intensity (Vs) generated by measuring the (15)N/(14)N isotope ratio. The method is validated over a range of concentration (2-70 mmol/L) and δ(15)N (-70 to +50‰) values for six molecules of diverse chemical nature and functionality (nortropine, norpseudotropine, nortropinone, cysteine, taurine, glutathione). It is shown that once the ion current is calibrated, the quantitative values are of a comparable quality to those obtained from GC with flame ionization detection (GC-FID). In addition, it is demonstrated that over a definable range, the δ(15)N (‰) value is independent of the quantity of analyte introduced, confirming the validity of this method.


Subject(s)
Chemistry Techniques, Analytical/methods , Cysteine/chemistry , Glutathione/chemistry , Mass Spectrometry , Nitrogen Isotopes , Taurine/chemistry , Tropanes/chemistry , Alkaloids/chemistry , Limit of Detection , Pseudomonas/chemistry
2.
Anal Bioanal Chem ; 396(4): 1405-14, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20024532

ABSTRACT

An important route for the detoxification of tropane alkaloids involves N-demethylation to the nor-compounds followed by further degradation. In order to study the mechanisms of the pertinent reactions, a suitable means to determine the isotope ratios of the substrates and products is required. However, the polarity and functionality of the nortropane compounds makes their analysis as free bases difficult. A method is described which allows both the quantification of nortropane alkaloids and the determination of their natural abundance delta(15)N values. The protocol exploits the derivatisation of the alkaloids by reaction with ethyl chloroformate in aqueous medium and the quantitative extraction of the ensuing ethylcarbamate esters. The improved chromatographic properties of these derivatives gives ample separation of the isomeric nortropine and norpseudotropine for measurement of their delta(15)N (per thousand) values by isotope ratio mass spectrometry interfaced to gas chromatography. Adequate separation could not be achieved with the underivatised compounds. Repeatability and precision are sufficient to allow differences in the delta(15)N values (Deltadelta(15)N) > 0.8 per thousand to be measured, with a standard deviation routinely approximately 0.3 per thousand. The methodology has been tested by determining the changes in the delta(15)N values of nortropine and norpseudotropine during degradation by cell suspension cultures of a Pseudomonas strain expressing a specific capacity for tropine catabolism. The precision and reproducibility are shown sufficient to allow the evolution of the delta(15)N values to be followed during the fermentation.


Subject(s)
Alkaloids/analysis , Isotopes/analysis , Nortropanes/analysis , Carbamates/chemistry , Esters/chemistry , Ethane/chemistry , Gas Chromatography-Mass Spectrometry , Molecular Structure , Nitrogen Isotopes , Pseudomonas , Reproducibility of Results
3.
Chemistry ; 14(28): 8521-9, 2008.
Article in English | MEDLINE | ID: mdl-18688832

ABSTRACT

We report the synthesis and biochemical evaluation of selective inhibitors of class II (zinc-dependent) fructose bisphosphate aldolases. The most active compound is a simplified analogue of fructose bisphosphate, bearing a well-positioned metal chelating group. It is a powerful and highly selective competitive inhibitor of isolated class II aldolases. We report crystallographic studies of this inhibitor bound in the active site of the Helicobacter pylori enzyme. The compound also shows activity against Mycobacterium tuberculosis isolates.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Fructose-Bisphosphate Aldolase/antagonists & inhibitors , Crystallography , Microbial Sensitivity Tests , Models, Molecular , Mycobacterium tuberculosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...