Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomech Model Mechanobiol ; 22(3): 987-1002, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36853513

ABSTRACT

Cardiac valves simulation is one of the most complex tasks in cardiovascular modeling. Fluid-structure interaction is not only highly computationally demanding but also requires knowledge of the mechanical properties of the tissue. Therefore, an alternative is to include valves as resistive flow obstacles, prescribing the geometry (and its possible changes) in a simple way, but, at the same time, with a geometry complex enough to reproduce both healthy and pathological configurations. In this work, we present a generalized parametric model of the aortic valve to obtain patient-specific geometries that can be included into blood flow simulations using a resistive immersed implicit surface (RIIS) approach. Numerical tests are presented for geometry generation and flow simulations in aortic stenosis patients whose parameters are extracted from ECG-gated CT images.


Subject(s)
Aortic Valve Stenosis , Aortic Valve , Humans , Aortic Valve/physiology , Hemodynamics/physiology , Models, Cardiovascular , Computer Simulation
2.
J Imaging ; 7(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34460789

ABSTRACT

Medial descriptors are of significant interest for image simplification, representation, manipulation, and compression. On the other hand, B-splines are well-known tools for specifying smooth curves in computer graphics and geometric design. In this paper, we integrate the two by modeling medial descriptors with stable and accurate B-splines for image compression. Representing medial descriptors with B-splines can not only greatly improve compression but is also an effective vector representation of raster images. A comprehensive evaluation shows that our Spline-based Dense Medial Descriptors (SDMD) method achieves much higher compression ratios at similar or even better quality to the well-known JPEG technique. We illustrate our approach with applications in generating super-resolution images and salient feature preserving image compression.

3.
Int J Comput Assist Radiol Surg ; 16(9): 1447-1457, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34043144

ABSTRACT

PURPOSE: The purpose of this paper is to present and validate a new semi-automated 3D surface mesh segmentation approach that optimizes the laborious individual human vertebrae separation in the spinal virtual surgical planning workflow and make a direct accuracy and segmentation time comparison with current standard segmentation method. METHODS: The proposed semi-automatic method uses the 3D bone surface derived from CT image data for seed point-based 3D mesh partitioning. The accuracy of the proposed method was evaluated on a representative patient dataset. In addition, the influence of the number of used seed points was studied. The investigators analyzed whether there was a reduction in segmentation time when compared to manual segmentation. Surface-to-surface accuracy measurements were applied to assess the concordance with the manual segmentation. RESULTS: The results demonstrated a statically significant reduction in segmentation time, while maintaining a high accuracy compared to the manual segmentation. A considerably smaller error was found when increasing the number of seed points. Anatomical regions that include articulating areas tend to show the highest errors, while the posterior laminar surface yielded an almost negligible error. CONCLUSION: A novel seed point initiated surface based segmentation method for the laborious individual human vertebrae separation was presented. This proof-of-principle study demonstrated the accuracy of the proposed method on a clinical CT image dataset and its feasibility for spinal virtual surgical planning applications.


Subject(s)
Spine , Tomography, X-Ray Computed , Algorithms , Humans , Imaging, Three-Dimensional , Spine/diagnostic imaging , Spine/surgery
4.
IEEE Comput Graph Appl ; 39(2): 77-88, 2019.
Article in English | MEDLINE | ID: mdl-30640603

ABSTRACT

We present a novel active learning approach for shape cosegmentation based on graph convolutional networks (GCNs). The premise of our approach is to represent the collections of three-dimensional shapes as graph-structured data, where each node in the graph corresponds to a primitive patch of an oversegmented shape, and is associated with a representation initialized by extracting features. Then, the GCN operates directly on the graph to update the representation of each node based on a layer-wise propagation rule, which aggregates information from its neighbors, and predicts the labels for unlabeled nodes. Additionally, we further suggest an active learning strategy that queries the most informative samples to extend the initial training samples of GCN to generate more accurate predictions of our method. Our experimental results on the Shape COSEG dataset demonstrate the effectiveness of our approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...