Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lasers Surg Med ; 56(1): 107-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974375

ABSTRACT

OBJECTIVES: Erbium lasers have become an accepted tool for performing both ablative and non-ablative medical procedures, especially when minimal invasiveness is desired. Hard-tissue desiccation during Er:YAG laser procedures is a well-known phenomenon in dentistry, the effect of which is to a certain degree being addressed by the accompanying cooling water spray. The desiccation of soft tissue has attracted much less attention due to the soft tissue's high-water content, resulting in a smaller effect on the ablation process. MATERIALS AND METHODS: In this study, the characteristics of skin temperature decay following irradiations with Er:YAG laser pulses were measured using a fast thermal camera. RESULTS: The measurements revealed a substantial increase in temperature decay times and resulting thermal exposure times following irradiations with Er:YAG pulses with fluences below the laser ablation threshold. Based on an analytical model where the skin surface cooling time is calculated from the estimated thickness of the heated superficial layer of the stratum corneum (SC), the observed phenomena is attributed to the accelerated evaporation of water from the SC's surface. By using an Arrhenius damage integral-based variable heat shock model to describe the dependence of the critical temperature on the duration of thermal exposure, it is shown that contrary to what an inexperienced practitioner might expect, the low-to-medium level fluences may result in a larger thermal damage in comparison to treatments where higher fluences are used. This effect may be alleviated by hydrating the skin before Er:YAG treatments. CONCLUSION: Our study indicates that tissue desiccation may play a more important role than expected for soft-tissue procedures. It is proposed that its effect may be alleviated by hydrating the skin before Er:YAG treatments.


Subject(s)
Laser Therapy , Lasers, Solid-State , Lasers, Solid-State/therapeutic use , Temperature , Desiccation , Laser Therapy/adverse effects , Laser Therapy/methods , Water
2.
Biomed Opt Express ; 12(7): 4530-4543, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34457430

ABSTRACT

Advancements in medical laser technology have paved the way for its widespread acceptance in a variety of treatments and procedures. Selectively targeting particular tissue structures with minimally invasive procedures limits the damage to surrounding tissue and allows for reduced post-procedural downtime. In many treatments that are hyperthermia-based, the efficiency depends on the achieved temperature within the targeted tissues. Current approaches for monitoring subdermal temperature distributions are either invasive, complex, or offer inadequate spatial resolution. Numerical studies are often therapy-tailored and source tissue parameters from the literature, lacking versatility and a tissue-specific approach. Here, we show a protocol that estimates the temperature distribution within the tissue based on a thermographic recording of its surface temperature evolution. It couples a time-dependent matching algorithm and thermal-diffusion-based model, while recognizing tissue-specific characteristics yielded by a fast calibration process. The protocol was employed during hyperthermic laser treatment performed ex-vivo on a heterogeneous porcine tissue, and in-vivo on a human subject. In both cases the calibrated thermal parameters correlate with the range of values reported by other studies. The matching algorithm sufficiently reproduced the temperature dynamics of heterogeneous tissue. The estimated temperature distributions within ex-vivo tissue were validated by simultaneous reference measurements, and the ones estimated in-vivo reveal a distribution trend that correlates well with similar studies. The presented method is versatile, supported by the protocol for tissue-specific tailoring, and can readily be implemented for temperature monitoring of various hyperthermia-based procedures by means of recording the surface temperature evolution with a miniature thermal camera implemented within a handheld laser scanner or similar.

3.
Sci Rep ; 10(1): 20242, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219279

ABSTRACT

Medical treatments such as high-intensity focused ultrasound, hyperthermic laser lipolysis or radiofrequency are employed as a minimally invasive alternatives for targeted tissue therapies. The increased temperature of the tissue triggers various thermal effects and leads to an unavoidable damage. As targeted tissues are generally located below the surface, various approaches are utilized to prevent skin layers from overheating and irreparable thermal damages. These procedures are often accompanied by cooling systems and protective layers accounting for a non-trivial detection of the subsurface temperature peak. Here, we show a temperature peak estimation method based on infrared thermography recording of the surface temperature evolution coupled with a thermal-diffusion-based model and a time-dependent data matching algorithm. The performance of the newly developed method was further showcased by employing hyperthermic laser lipolysis on an ex-vivo porcine fat tissue. Deviations of the estimated peak temperature remained below 1 °C, as validated by simultaneous measurement of depth temperature field within the tissue. Reconstruction of the depth profile shows a good reproducibility of the real temperature distribution with a small deviation of the peak temperature position. A thermal camera in combination with the time-dependent matching bears the scope for non-contact monitoring of the depth temperature profile as fast as 30 s. The latest demand for miniaturization of thermal cameras provides the possibility to embed the model in portable thermal scanners or medical laser technologies for improving safety and efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...