Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Vet Med Sci ; 9(4): 1584-1591, 2023 07.
Article in English | MEDLINE | ID: mdl-37317989

ABSTRACT

BACKGROUND: Ropinirole has been shown to provoke vomiting in dogs by activating the dopamine D2-like receptors in the chemoreceptor trigger zone. In humans, ropinirole is metabolized primarily by CYP1A2. Corresponding dog CYP1A2 is known to be a polymorphic enzyme which can cause variation in pharmacokinetics of compounds metabolised via this enzyme. OBJECTIVES: The aim of this study was to understand metabolic clearance of ropinirole in dogs, the enzymes involved in ropinirole metabolism and specially to estimate whether the clearance can be sensitive towards the polymorphism of canine CYP1A2. METHODS: Metabolism of ropinirole was studied in dog hepatocytes and specific recombinant canine CYP isoforms. Metabolite identification and metabolite formation were evaluated using LC-mass spectrometry. RESULTS: Ropinirole was moderately stable in dog hepatocytes with Clint of 16.3 µL/min/million cells, and the metabolites detected were 7-hydroxy ropinirole and respective glucuronide conjugate as well as despropyl ropinirole. Regarding recombinant CYPs either 7-hydroxy ropinirole, despropyl ropinirole or both were detected for each CYP isoform studied. The highest rates of metabolite formation were observed in CYP2B11, CYP2C21, CYP2D15, CYP1A2 and CYP1A1. Fluvoxamine, a fairly selective human CYP1A/CYP2C19 inhibitor inhibited ropinirole metabolism by CYP1A1, CYP1A2, CYP2B11, CYP2C21 and CYP2D15 for 65.8%-100% showing no selectivity towards canine CYP isoforms. CONCLUSIONS: Although human metabolism of ropinirole is mainly mediated through CYP1A2, the current study shows that several canine CYP isoforms are able to contribute to the clearance of ropinirole in dogs. This is expected to reduce a possible impact of canine CYP1A2 polymorphism on ropinirole pharmacokinetics.


Subject(s)
Cytochrome P-450 CYP1A1 , Cytochrome P-450 CYP1A2 , Dogs , Animals , Humans , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A1/metabolism , Microsomes, Liver/metabolism , Cytochrome P-450 Enzyme System/metabolism
2.
Bioorg Med Chem Lett ; 77: 129005, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36174834

ABSTRACT

Here is reported the design and synthesis of a series of highly potent and selective α2C antagonists using benzodioxine methyl piperazine as a central scaffold by pharmacophoric analysis to improve the pharmacokinetics of suboptimal clinical candidate molecules.


Subject(s)
Receptors, Adrenergic, alpha-2
3.
Bioorg Med Chem Lett ; 69: 128783, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35569686

ABSTRACT

In this manuscript, we report a series of benzodioxine methyl piperidine derivatives as highly potent and selective α2C antagonists by ligand design to improve the pharmacokinetics of a previous candidate molecule.


Subject(s)
Dioxins , Receptors, Adrenergic, alpha-2 , Piperidines/pharmacology
4.
Clin Pharmacokinet ; 61(4): 565-575, 2022 04.
Article in English | MEDLINE | ID: mdl-34866168

ABSTRACT

BACKGROUND: Darolutamide is a second-generation androgen receptor inhibitor approved for the treatment of nonmetastatic castration-resistant prostate cancer at a dosage of 600 mg orally twice daily. OBJECTIVE: We aimed to fully characterize the pharmacokinetic profile of darolutamide, its diastereomers, and its main active metabolite, keto-darolutamide. METHODS: Single-dose and multiple-dose pharmacokinetics of 14C-labeled and non-labeled darolutamide were evaluated in healthy subjects and patients with hepatic or renal impairment. RESULTS: Following darolutamide oral tablet administration, peak plasma concentrations were reached 4-6 h after dosing. Darolutamide elimination was characterized by a half-life of 13 h. Steady state was reached after approximately 2 days of twice-daily dosing. Pharmacokinetics of the diastereomers and keto-darolutamide followed similar trends to the parent compound. Darolutamide absorption from the tablet was lower than from the oral solution; tablet absolute bioavailability was ~30% in the fasted state but improved to 60-75% when given with food. The unbound fraction of darolutamide in plasma was 7.8%. The administered 1:1 ratio of the diastereomers (S,R)-darolutamide and (S,S)-darolutamide changed to ~1:6 in plasma following multiple dosing. Similar exposure and diastereomer ratios after single and multiple dosing indicate time-independent (no autoinduction) linear pharmacokinetics. Darolutamide exposure increased in patients with moderate hepatic or severe renal impairment vs healthy subjects; dose adaptation at treatment initiation should be considered in these patients. CONCLUSIONS: Darolutamide 600 mg twice daily demonstrates predictable linear pharmacokinetics and sustainably high plasma concentrations, suggesting the potential for constant inhibition of the androgen receptor signaling pathway. CLINICAL TRIALS REGISTRATION: NCT02418650, NCT02894385, NCT02671097.


Subject(s)
Pyrazoles , Receptors, Androgen , Androgen Receptor Antagonists/pharmacology , Androgen Receptor Antagonists/therapeutic use , Clinical Trials as Topic , Healthy Volunteers , Humans , Male , Pyrazoles/pharmacokinetics
5.
Drug Metab Dispos ; 49(6): 420-433, 2021 06.
Article in English | MEDLINE | ID: mdl-33785516

ABSTRACT

The biotransformation and excretion of darolutamide were investigated in a phase I study. Six healthy male volunteers received a single dose of 300 mg 14C-darolutamide as an oral solution in the fasted state. Plasma, urine, and feces samples were analyzed for mass balance evaluation by liquid scintillation counting (LSC). Metabolite profiling and identification were determined using liquid chromatography mass-spectrometry with off-line radioactivity detection using LSC. Complete mass balance was achieved, with mean radioactivity recovery of 95.9% within 168 hours (63.4% in urine, 32.4% in feces). The administered 1:1 ratio of (S,R)- and (S,S)-darolutamide changed to approximately 1:5, respectively, in plasma. Darolutamide and the oxidation product, keto-darolutamide, were the only components quantifiable by LSC in plasma, accounting for 87.4% of total radioactivity, with a 2.1-fold higher plasma exposure for keto-darolutamide. Aside from darolutamide, the most prominent metabolites in urine were O-glucoronide (M-7a/b) and N-glucuronide (M-15a/b), as well as pyrazole sulfates (M-29, M-24) and glucuronides (M-21, M-22) resulting from oxidative cleavage of the parent. The darolutamide diastereomers were mainly detected in feces. In vitro assays showed that darolutamide metabolism involves a complex interplay between oxidation and reduction, as well as glucuronidation. Interconversion of the diastereomers involves oxidation to keto-darolutamide, primarily mediated by CYP3A4, followed by reduction predominantly catalyzed by cytosolic reductase(s), with aldo-keto reductase 1C3 playing the major role. The latter reaction showed stereoselectivity with preferential formation of (S,S)-darolutamide. SIGNIFICANCE STATEMENT: The metabolism and excretion of darolutamide in humans revealed that oxidation (CYP3A4) and glucuronidation (UGT1A9, UGT1A1) were the main metabolic routes of elimination. Direct excretion also contributed to overall clearance. The two pharmacologically equipotent diastereomers of darolutamide interconvert primarily via oxidation to the active metabolite keto-darolutamide, followed by reduction predominantly by cytosolic reductase(s). The latter reaction showed stereoselectivity with preferential formation of (S,S)-darolutamide. Data indicate a low drug-drug interaction potential of darolutamide with inducers or inhibitors of metabolizing enzymes.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Drug Elimination Routes/physiology , Glucuronides , Pyrazoles , UDP-Glucuronosyltransferase 1A9/metabolism , Adult , Androgen Receptor Antagonists/administration & dosage , Androgen Receptor Antagonists/pharmacokinetics , Biotransformation , Glucuronides/metabolism , Glucuronides/urine , Healthy Volunteers , Humans , Male , Mass Spectrometry/methods , Oxidation-Reduction , Pharmaceutical Solutions/administration & dosage , Pharmaceutical Solutions/pharmacokinetics , Pyrazoles/administration & dosage , Pyrazoles/pharmacokinetics , Scintillation Counting/methods
6.
Drug Metab Lett ; 14(1): 9-16, 2021.
Article in English | MEDLINE | ID: mdl-33183216

ABSTRACT

BACKGROUND: Saini et al. recently investigated the pharmacokinetics of darolutamide and its diastereomers in vitro and in vivo in Balb/c mice, reporting higher levels of (S,S)-darolutamide than (S,R)-darolutamide following intravenous or oral dosing, and interconversion of (S,R)-darolutamide to (S,S)-darolutamide. OBJECTIVE: To present our in vitro and in vivo studies of darolutamide pharmacokinetics in mice, which contrast with the findings of Saini et al. Methods: Nude male Balb/c mice were orally dosed for 7 days with 25, 50, or 100 mg/kg of darolutamide twice daily. Pharmacokinetic parameters in plasma and tissue samples were assessed by liquid chromatography-tandem mass spectrometry. Metabolism and interconversion of darolutamide and its diastereomers were investigated in cryopreserved Balb/c mouse hepatocytes. Protein binding was determined in plasma samples by equilibrium dialysis. RESULTS: On day 7, Cmax was reached 30 min after the last dose. Rapid formation and greater exposure of keto-darolutamide versus darolutamide were observed. Plasma exposure of (S,R)-darolutamide was 3-5-fold higher than that of (S,S)-darolutamide. The fraction of unbound keto-darolutamide was almost 6-fold lower than for darolutamide. In mouse hepatocytes, the conversion of (S,S)- to (S,R)-darolutamide was observed, but the conversion of (S,R)- to (S,S)-darolutamide was not detectable. Back-formation of keto-darolutamide to both diastereomers occurred at low levels. CONCLUSION: The darolutamide diastereomer ratio changes upon administration in mice and other species due to interconversion through keto-darolutamide. This is not considered clinically relevant since both diastereomers and keto- darolutamide are pharmacologically similar in vitro. Based on the high protein binding of keto-darolutamide, its contribution in vivo in humans is considered low.


Subject(s)
Androgen Receptor Antagonists , Pyrazoles , Animals , Chromatography, Liquid , Male , Mice , Mice, Inbred BALB C
7.
Eur J Pharm Sci ; 147: 105280, 2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32109493

ABSTRACT

The release and absorption profile of an oral medication is influenced by the physicochemical properties of the drug and its formulation, as well as by the anatomy and physiology of the gastrointestinal (GI) tract. During drug development the bioavailability of a new drug is typically assessed in early clinical studies in a healthy adult population. However, many disease conditions are associated with an alteration of the anatomy and/or physiology of the GI tract. The same holds true for some subpopulations, such as paediatric or elderly patients, or populations with different ethnicity. The variation in GI tract conditions compared to healthy adults can directly affect the kinetics of drug absorption, and thus, safety and efficacy of an oral medication. This review provides an overview of GI tract properties in special populations compared to healthy adults and discusses how drug absorption is affected by these conditions. Particular focus is directed towards non-disease dependent conditions (age, sex, ethnicity, genetic factors, obesity, pregnancy), GI diseases (ulcerative colitis and Crohn's disease, celiac disease, cancer in the GI tract, Roux-en-Y gastric bypass, lactose intolerance, Helicobacter pylori infection, and infectious diseases of the GI tract), as well as systemic diseases that change the GI tract conditions (cystic fibrosis, diabetes, Parkinson's disease, HIV enteropathy, and critical illness). The current knowledge about GI conditions in special populations and their impact on drug absorption is still limited. Further research is required to improve confidence in pharmacokinetic predictions and dosing recommendations in the targeted patient population, and thus to ensure safe and effective drug therapies.


Subject(s)
Gastrointestinal Absorption/physiology , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/physiology , Administration, Oral , Adult , Aged , Child , Drug Liberation , Gastrointestinal Diseases , Humans
8.
Xenobiotica ; 50(8): 967-979, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32003293

ABSTRACT

1. Darolutamide is a novel selective androgen receptor antagonist consisting of two pharmacologically equipotent diastereoisomers. The absorption, distribution, metabolism and excretion properties of darolutamide in rats are reported.2. Non- or [14C]-labelled darolutamide, its diastereoisomers and major metabolite were studied in intact and bile duct-cannulated rats (oral and intravenous administration), and rat hepatocytes.3. Darolutamide was quickly (1 h to reach maximum plasma concentration) and completely absorbed after oral administration. Absolute bioavailability was high. Keto-darolutamide was the most abundant metabolite in rat hepatocytes and the only major one in plasma. Interconversion between diastereoisomers was observed.4. After oral administration, radioactivity distributed widely and homogeneously. Penetration into brain was low (brain/blood ratio = 0.079). Elimination was rapid from most tissues. Excretion occurred rapidly, and routes were similar irrespective of administration routes. Complete mass balance was reached by 168 h post-dose. Most radioactivity (61-64%) was excreted in faeces, while relevant amounts (30-33%) were also excreted into urine. The main clearance routes were metabolism via oxidative reactions and glucuronidation. After intravenous administration, a relevant extent of the dose (20%) underwent extrabiliary excretion as darolutamide.


Subject(s)
Androgen Receptor Antagonists/pharmacokinetics , Pyrazoles/pharmacokinetics , Administration, Oral , Animals , Bile/metabolism , Biological Availability , Body Fluids , Feces , Intestinal Absorption , Rats , Tissue Distribution
9.
Target Oncol ; 14(5): 527-539, 2019 10.
Article in English | MEDLINE | ID: mdl-31571095

ABSTRACT

BACKGROUND: Darolutamide, an androgen receptor antagonist with a distinct molecular structure, significantly prolonged metastasis-free survival versus placebo in the phase III ARAMIS study in men with nonmetastatic castration-resistant prostate cancer (nmCRPC). In this population, polypharmacy for age-related comorbidities is common and may increase drug-drug interaction (DDI) risks. Preclinical/phase I study data suggest darolutamide has a low DDI potential-other than breast cancer resistance protein/organic anion transporter protein substrates (e.g., statins), no clinically relevant effect on comedications is expected. OBJECTIVE: Our objective was to evaluate the effect of commonly administered drugs on the pharmacokinetics of darolutamide and the effect of comedications potentially affected by darolutamide on safety in patients with nmCRPC. PATIENTS AND METHODS: Comorbidities and comedication use in the 1509 ARAMIS participants treated with darolutamide 600 mg twice daily or placebo were assessed. A population pharmacokinetic analysis evaluated whether comedications affected the pharmacokinetics of darolutamide in a subset of 388 patients. A subgroup analysis of adverse events (AEs) in statin users versus nonusers was conducted. RESULTS: Most participants (median age 74 years) had at least one comorbidity (98.4% in both arms) and used at least one comedication (98.7% with darolutamide vs. 98.0% with placebo); these were similar across study arms. Despite frequent use of comedications with DDI potential, no significant effects on darolutamide pharmacokinetics were identified. Comedications included lipid-modifying agents (34.5%), ß-blockers (29.7%), antithrombotics (42.8%), and systemic antibiotics (26.9%). AE incidence was similar across study arms in statin users and nonusers. Study limitations include the small sample size for sub-analyses. CONCLUSIONS: These analyses suggest the pharmacokinetic profile of darolutamide is not affected by a number of commonly administered drugs in patients with nmCRPC. Although pharmacokinetic data have indicated that darolutamide has the potential to interact with rosuvastatin, used to assess DDI in these studies, this finding did not seem to translate into increased AEs due to statin use in the ARAMIS trial. Clinicaltrials.gov identifier: NCT02200614.


BACKGROUND: Darolutamide is a medicine used to treat men with prostate cancer that has not spread to other parts of the body (nonmetastatic). Often, these patients are taking other medicines for common age-related illnesses. Taking more than one medicine at the same time increases the chances of what is known as drug­drug interactions. Drug­drug interactions can decrease how well the medicines work or may sometimes increase side effects. STUDY AIM: To test for possible drug­drug interactions in men with prostate cancer who take darolutamide alongside other medicines. STUDY PARTICIPANTS: Men with nonmetastatic prostate cancer who were being treated with a medicine that lowers testosterone, a chemical in the body that causes prostate cancer tumors to grow. Participants took two darolutamide 300 mg tablets, or an inactive placebo, twice a day. WHAT DID THE RESEARCHERS MEASURE?: The researchers documented the number of medicines taken by each participant and the number of other medical conditions that they had. Tests were done to find out whether other medicines affected the way that darolutamide works in the body and whether patients taking darolutamide alongside other medicines experienced more side effects. RESULTS: As would be expected, based on the typical age of patients with prostate cancer, more than 90% of participants in this study used medicines other than darolutamide to manage common age-related illnesses or medical conditions. Taking medicines alongside darolutamide did not impact how darolutamide worked in the body and did not increase the number of side effects experienced by patients. Darolutamide is known to interact with rosuvastatin, a cholesterol-lowering drug. However, in this study, there was no overall increase in side effects among darolutamide-treated patients who took this type of drug compared with in those who did not. CONCLUSION: In this study of patients with nonmetastatic prostate cancer, limited drug­drug interactions were seen when taking darolutamide alongside other medicines given to these patients to manage age-related medical conditions.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/therapeutic use , Drug Interactions , Drug-Related Side Effects and Adverse Reactions/epidemiology , Prostatic Neoplasms/drug therapy , Pyrazoles/therapeutic use , Rosuvastatin Calcium/therapeutic use , Aged , Aged, 80 and over , Androgen Receptor Antagonists/pharmacokinetics , Anticholesteremic Agents/therapeutic use , Castration , Comorbidity , Double-Blind Method , Humans , Incidence , Male , Middle Aged , Neoplasm Metastasis , Neoplasm Recurrence, Local , Placebos , Polypharmacy , Prostatic Neoplasms/epidemiology , Pyrazoles/pharmacokinetics
10.
Eur J Drug Metab Pharmacokinet ; 44(6): 747-759, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31571146

ABSTRACT

BACKGROUND AND OBJECTIVES: Darolutamide is a novel androgen receptor (AR) antagonist approved for the treatment of nonmetastatic castration-resistant prostate cancer (nmCRPC). Accordingly, the drug-drug interaction (DDI) potential of darolutamide was investigated in both nonclinical and clinical studies. METHODS: In vitro studies were performed to determine the potential for darolutamide to be a substrate, inducer or inhibitor for cytochrome P450 (CYP) isoforms, other metabolizing enzymes and drug transporters. A phase I drug-interaction study in healthy volunteers evaluated the impact of co-administering rifampicin [CYP3A4 and P-glycoprotein (P-gp) inducer] and itraconazole [CYP3A4, P-gp and breast cancer resistance protein (BCRP) inhibitor] on the pharmacokinetics of darolutamide. Two further phase I studies assessed the impact of co-administering oral darolutamide on the pharmacokinetics of midazolam (sensitive CYP3A4 substrate) and dabigatran etexilate (P-gp substrate) and the impact on the pharmacokinetics of co-administered rosuvastatin [a substrate for BCRP, organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and organic anion transporter (OAT)3]. RESULTS: In vitro, darolutamide was predominantly metabolized via oxidative biotransformation catalyzed by CYP3A4 and was identified as a substrate for P-gp and BCRP. The enzymatic activity of nine CYP isoforms was not inhibited or slightly inhibited in vitro with darolutamide, and a rank order and mechanistic static assessment indicated that risk of clinically relevant DDIs via CYP inhibition is very low. In vitro, darolutamide exhibited no relevant induction of CYP1A2 or CYP2B6 activity. Inhibition of BCRP-, P-gp-, OAT3-, MATE1-, MATE2-K-, OATP1B1- and OATP1B3-mediated transport was observed in vitro. Phase I data showed that darolutamide exposure increased 1.75-fold with co-administered itraconazole and decreased by 72% with rifampicin. Co-administration of darolutamide with CYP3A4/P-gp substrates showed no effect or only minor effects. Rosuvastatin exposure increased 5.2-fold with darolutamide because of BCRP and probably also OATPB1/OATPB3 inhibition. CONCLUSIONS: Darolutamide has a low potential for clinically relevant DDIs with drugs that are substrates for CYP or P-gp; increased exposure of BCRP and probably OATP substrates was the main interaction of note.


Subject(s)
Cytochrome P-450 Enzyme System/drug effects , Drug Interactions , Pyrazoles/pharmacology , Pyrazoles/pharmacokinetics , Aged , Cells, Cultured , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Dabigatran/pharmacokinetics , Enzyme Induction/drug effects , Female , Humans , Itraconazole/pharmacology , Male , Membrane Transport Proteins/drug effects , Microsomes, Liver/drug effects , Midazolam/pharmacokinetics , Middle Aged , Pyrazoles/blood , Pyrazoles/urine , Rifampin/pharmacology , Rosuvastatin Calcium/pharmacokinetics
11.
J Neurosci ; 36(19): 5299-313, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27170127

ABSTRACT

UNLABELLED: Rapid reorganization and stabilization of the actin cytoskeleton in dendritic spines enables cellular processes underlying learning, such as long-term potentiation (LTP). Dendritic spines are enriched in exceptionally short and dynamic actin filaments, but the studies so far have not revealed the molecular mechanisms underlying the high actin dynamics in dendritic spines. Here, we show that actin in dendritic spines is dynamically phosphorylated at tyrosine-53 (Y53) in rat hippocampal and cortical neurons. Our findings show that actin phosphorylation increases the turnover rate of actin filaments and promotes the short-term dynamics of dendritic spines. During neuronal maturation, actin phosphorylation peaks at the first weeks of morphogenesis, when dendritic spines form, and the amount of Y53-phosphorylated actin decreases when spines mature and stabilize. Induction of LTP transiently increases the amount of phosphorylated actin and LTP induction is deficient in neurons expressing mutant actin that mimics phosphorylation. Actin phosphorylation provides a molecular mechanism to maintain the high actin dynamics in dendritic spines during neuronal development and to induce fast reorganization of the actin cytoskeleton in synaptic plasticity. In turn, dephosphorylation of actin is required for the stabilization of actin filaments that is necessary for proper dendritic spine maturation and LTP maintenance. SIGNIFICANCE STATEMENT: Dendritic spines are small protrusions from neuronal dendrites where the postsynaptic components of most excitatory synapses reside. Precise control of dendritic spine morphology and density is critical for normal brain function. Accordingly, aberrant spine morphology is linked to many neurological diseases. The actin cytoskeleton is a structural element underlying the proper morphology of dendritic spines. Therefore, defects in the regulation of the actin cytoskeleton in neurons have been implicated in neurological diseases. Here, we revealed a novel mechanism for regulating neuronal actin cytoskeleton that explains the specific organization and dynamics of actin in spines. The better we understand the regulation of the dendritic spine morphology, the better we understand what goes wrong in neurological diseases.


Subject(s)
Actins/metabolism , Dendritic Spines/metabolism , Long-Term Potentiation , Neurogenesis , Protein Processing, Post-Translational , Actin Cytoskeleton/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Dendritic Spines/physiology , Female , Humans , Male , Phosphorylation , Rats , Tyrosine/metabolism
12.
Cytoskeleton (Hoboken) ; 73(9): 435-41, 2016 Sep.
Article in English | MEDLINE | ID: mdl-26849484

ABSTRACT

The majority of the postsynaptic terminals of excitatory synapses in the central nervous system exist on small bulbous structures on dendrites known as dendritic spines. The actin cytoskeleton is a structural element underlying the proper development and morphology of dendritic spines. Synaptic activity patterns rapidly change actin dynamics, leading to morphological changes in dendritic spines. In this mini-review, we will discuss recent findings on neuronal maturation and synaptic plasticity-induced changes in the dendritic spine actin cytoskeleton. We propose that actin dynamics in dendritic spines decrease through actin filament crosslinking during neuronal maturation. In long-term potentiation, we evaluate the model of fast breakdown of actin filaments through severing and rebuilding through polymerization and later stabilization through crosslinking. We will discuss the role of Ca(2+) in long-term depression, and suggest that actin filaments are dissolved through actin filament severing. © 2016 Wiley Periodicals, Inc.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Dendritic Spines/metabolism , Long-Term Synaptic Depression/physiology , Models, Neurological , Animals , Humans
13.
Curr Med Chem ; 22(4): 538-50, 2015.
Article in English | MEDLINE | ID: mdl-25312212

ABSTRACT

Drug metabolism can result in the formation of highly reactive metabolites that are known to play a role in toxicity resulting in a significant proportion of attrition during drug development and clinical use. Thus, the earlier such reactivity was detected, the better. This review summarizes our multi-year project, together with pertinent literature, to examine a battery of in vitro tests capable of detecting the formation of reactive metabolites. Principal prerequisites for such tests were delineated: chemicals known/not known to cause tissue injury and produce reactive metabolites, activation system (mainly human-derived), small- and large-molecular targets (small-molecular trappers, peptides, proteins), analytical techniques (mass spectrometry), and cellular toxicity biomarkers. The current status of in vitro tools to detect reactive intermediates is the following: 1. Small-molecular trapping agents such glutathione or cyanide detect the production of reactive species with high sensitivity by proper MS technique. However, it seems that also putative "negatives" give rise to corresponding adducts. 2. Results from peptide and dG (DNA targeting) trapper studies are generally in line with those of small-molecular trappers, although also important differences exist. These two trapping platforms do not overlap. 3. It is anticipated that the in vitro adduct studies could be fully interpreted only in conjunction with toxicity biomarker (such as the Nrf2 pathway) information from whole cells or tissues. However, while there are tools to characterize the chemical liability and there are correlation between individual/integrated endpoints and toxicity, there are still severe gaps in understanding the mechanisms behind the link between reactive metabolites and adverse effects.


Subject(s)
Drug Evaluation, Preclinical/methods , Pharmaceutical Preparations/metabolism , Activation, Metabolic , Animals , Humans , In Vitro Techniques , Oligonucleotides/metabolism , Oligopeptides/metabolism
14.
Front Neuroanat ; 8: 74, 2014.
Article in English | MEDLINE | ID: mdl-25140131

ABSTRACT

During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines.

15.
Mol Cell Neurosci ; 61: 56-64, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24938665

ABSTRACT

Precise control of the formation and development of dendritic spines is critical for synaptic plasticity. Consequently, abnormal spine development is linked to various neurological disorders. The actin cytoskeleton is a structural element generating specific changes in dendritic spine morphology. Although mechanisms underlying dendritic filopodia elongation and spine head growth are relatively well understood, it is still not known how spine heads are enlarged and stabilized during dendritic spine maturation. By using rat hippocampal neurons, we demonstrate that the size of the stable actin pool increases during the neuronal maturation process. Simultaneously, the treadmilling rate of the dynamic actin pool increases. We further show that myosin IIb controls dendritic spine actin cytoskeleton by regulating these two different pools of F-actin via distinct mechanisms. The findings indicate that myosin IIb stabilizes the stable F-actin pool through actin cross-linking. Simultaneously, activation of myosin IIb contractility increases the treadmilling rate of the dynamic pool of actin. Collectively, these data show that myosin IIb has a major role in the regulation of actin filament stability in dendritic spines, and elucidate the complex mechanism through which myosin IIb functions in this process. These new insights into the mechanisms underlying dendritic spine maturation further the model of dendritic spine morphogenesis.


Subject(s)
Actins/metabolism , Dendritic Spines/physiology , Neurons/cytology , Nonmuscle Myosin Type IIB/metabolism , Actin Cytoskeleton/metabolism , Actins/genetics , Animals , Cells, Cultured , Dendritic Spines/drug effects , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heterocyclic Compounds, 4 or More Rings/pharmacology , Hippocampus/cytology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Marine Toxins , Microtubule-Associated Proteins/metabolism , Models, Biological , Neurons/drug effects , Nonmuscle Myosin Type IIB/genetics , Oxazoles/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Time Factors , Red Fluorescent Protein
16.
Methods Enzymol ; 505: 47-58, 2012.
Article in English | MEDLINE | ID: mdl-22289447

ABSTRACT

Dendritic spines are small protrusions in neuronal dendrites where the postsynaptic components of most excitatory synapses reside in the brain. The actin cytoskeleton is the structural element underlying changes in dendritic spine morphology and synapse strength. The proper morphology of spines and proper regulation of the actin cytoskeleton have been shown to be important in memory and learning; defects in regulation lead to various memory disorders. Thus, understanding actin cytoskeleton regulation in dendritic spines is of central importance to studies of synaptic and neuronal function. The dynamics of filamentous actin in spines can be studied with fluorescence redistribution assays. In fluorescence recovery after photobleaching (FRAP) experiments, the overexpressed green fluorescent protein (GFP)-actin fluorescence is rapidly photobleached by the application of a high-power laser beam to the area of one spine. The bleached fusion proteins incorporated into actin filaments continue treadmilling through the actin filaments and ultimately depolymerize and diffuse out of the spine. Simultaneously, unbleached GFP-actin fusion proteins diffuse into the spine and are incorporated into the filaments. The rate of actin filament treadmilling can be quantified by following the fluorescence recovery. In a photoactivation assay, the fluorescence intensity of photoactivatable-GFP-actin can be rapidly increased by a short laser pulse. The treadmilling rate of these activated actin monomers can be quantified by following the fluorescence decay. Here, we present our FRAP and photoactivation protocols to measure actin treadmilling rate in dendritic spines of living neurons.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Tracking/methods , Fluorescence Recovery After Photobleaching/methods , Actins/genetics , Animals , Dendritic Spines/metabolism , Green Fluorescent Proteins/genetics , Mice , Microscopy, Confocal/methods , Neurons/cytology , Neurons/metabolism , Rats , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
17.
Methods Enzymol ; 506: 391-406, 2012.
Article in English | MEDLINE | ID: mdl-22341234

ABSTRACT

Dendritic spines are small bulbous expansions that receive input from a single excitatory synapse. Although spines are often characterized by a mushroom-like morphology, they come in a wide range of sizes and shapes, even within the same dendrite. In a developing brain, spines exhibit a high degree of structural and functional plasticity, reflecting the formation and elimination of synapses during the maturation of neuronal circuits. The morphology of spines in developing neurons is affected by synaptic activity, hence contributing to the experience-dependent refinement of neuronal circuits, learning, and memory. Thus, understanding spine dynamics and its regulation is of central importance to studies of synaptic plasticity in the brain. The challenge has been to develop a computer-based assay that will quantitatively assess the three-dimensional change in spine movements caused by various stimuli and experimental conditions. Here, we provide detailed protocols for cell plating, transient transfections, and time-lapse imaging of dendritic spines. For the analysis of dendritic spine dynamics, we present two methods based on quantitative three-dimensional measurements.


Subject(s)
Dendritic Spines/ultrastructure , Microscopy, Confocal/methods , Time-Lapse Imaging/methods , Animals , Cell Culture Techniques/methods , Cells, Cultured , Humans , Image Processing, Computer-Assisted/methods , Mice , Rats , Software , Transfection/methods
18.
Xenobiotica ; 41(8): 652-69, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21434773

ABSTRACT

Metabolic disposition of drugs and other xenobiotics includes glucuronidation reactions that are catalyzed by the uridine diphosphate glucuronosyltransferases (UGTs). The most common glucuronidation reactions are O- and N-glucuronidation and in this review, we discuss both, while the emphasis is on N-glucuronidation. Interspecies difference in glucuronidation is another central issue in this review due to its importance in drug development. Accordingly, the available data on glucuronidation in different animals comes mainly from the species that are used in preclinical studies to assess the safety of drugs under development. Both O- and N-glucuronidation reactions are chemically diverse. Different O-glucuronidation reactions are described and discussed, and many drugs that undergo such reactions are indicated. The compounds that undergo N-glucuronidation include primary aromatic amines, hydroxylamines, amides, tertiary aliphatic amines, and aromatic N-heterocycles. The interspecies variability in N-glucuronidation is particularly high, above all when it comes to aliphatic tertiary amines and aromatic N-heterocycles. The N-glucuronidation rates in humans are typically much higher than in animals, largely due to the activity of two enzymes, the extensively studied UGT1A4, and the more recently identified as a main player in N-glucuronidation, UGT2B10. We discuss both enzymes and review the findings that revealed the role of UGT2B10 in N-glucuronidation.


Subject(s)
Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Pharmaceutical Preparations/metabolism , Animals , Catalysis , Humans , Uridine Diphosphate/metabolism , Xenobiotics/metabolism
19.
J Dairy Res ; 78(1): 49-55, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21134309

ABSTRACT

Up to half of quarter milk samples submitted for mastitis diagnosis are culture-negative results or lead to identification of coagulase-negative staphylococci or Corynebacterium bovis in conventional culturing, the so-called minor pathogens. The interpretation and usefulness of these results in terms of udder and animal health management is limited, even though the amount of resources spent is relatively high. This work aimed to test two methods of analysis of milk samples with the goal of increasing detection of intramammary pathogens. In the first study, 783 milk samples were processed in duplicate: before and after freezing at -20°C for 24 h, using standard bacteriological techniques. There was a significant difference between the two methods with samples frozen for 24 h yielding significantly fewer Gram-positive catalase-positive cocci, Gram-negative bacilli, Gram-positive bacilli and significantly more samples leading to no growth, than samples before freezing. The number of samples yielding Gram-positive catalase-negative cocci was not significantly affected by freezing. In the second study, a real-time PCR-based test was performed on milk samples with an individual quarter somatic cell count above 500,000 cells/ml that were either negative (n=51 samples) or that led to the isolation of minor pathogens in culturing: Corynebacterium bovis (n=79 samples) or non-aureus staphylococci (NAS, n=32). A mastitis pathogen, beyond the result obtained with standard bacteriology, was detected on 47% of the no-growth samples, on 35% of the samples from which C. bovis had been isolated and on 25% of the samples from which NAS had been isolated. The most commonly detected major pathogen was Escherichia coli, followed by Streptococcus uberis, Arcanobacterium pyogenes/Peptoniphilus indolicus and Streptococcus dysgalactiae. These results suggest that simply freezing milk samples for 24 h does not increase the detection of intramammary bacteria in milk samples and therefore should not be recommended. However, use of the real-time PCR-based test may be useful in diagnosing intramammary infections when milk samples with high somatic cell counts are culture-negative or when culturing results in the detection of minor pathogens.


Subject(s)
Bacteria/isolation & purification , Bacteriological Techniques , Mastitis, Bovine/microbiology , Milk/microbiology , Animals , Arcanobacterium/isolation & purification , Catalase/analysis , Cattle , Cell Count , Corynebacterium/isolation & purification , Female , Freezing , Mastitis, Bovine/diagnosis , Milk/cytology , Polymerase Chain Reaction , Staphylococcus/isolation & purification , Streptococcus/isolation & purification
20.
Bioorg Med Chem Lett ; 20(8): 2614-6, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20231095

ABSTRACT

Compound 1 is an investigational, nanomolar inhibitor of catechol-O-methyltransferase (COMT) that suffers from poor oral bioavailability, most probably due to its low lipophilicity throughout most of the gastrointestinal tract and, to a lesser extent, its rapid systemic clearance. Several lipophilic esters were designed as prodrugs and synthesized in an attempt to optimize presystemic drug absorption. A modest twofold increase in 6-h exposure of 1 was observed with two prodrugs, compared to that of 1, after oral treatment in rats.


Subject(s)
Catechol O-Methyltransferase Inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Administration, Oral , Animals , Biological Availability , Drug Design , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Humans , Male , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...