Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 14: 683-691, 2023.
Article in English | MEDLINE | ID: mdl-37346785

ABSTRACT

Electrochemical impedance spectroscopy was applied for studying copper oxide (CuO) nanowire networks assembled between metallic microelectrodes by dielectrophoresis. The influence of relative humidity (RH) on electrical characteristics of the CuO nanowire-based system was assessed by measurements of the impedance Z. A slight increase of Z with increasing RH at low humidity was followed by a three orders of magnitude decrease of Z at RH above 50-60%. The two opposite trends observed across the range of the examined RH of 5-97% can be caused by water chemisorption and physisorption at the nanowire interface, which suppress electronic transport inside the p-type semiconductor nanowire but enhance ionic transport in the water layers adsorbed on the nanowire surface. Possible physicochemical processes at the nanowire surface are discussed in line with equivalent circuit parameters obtained by fitting impedance spectra. The new investigation data can be useful to predict the behavior of nanostructured CuO in humid environments, which is favorable for advancing technology of nanowire-based systems suitable for sensor applications.

2.
Nanomaterials (Basel) ; 11(1)2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33419203

ABSTRACT

Electrostatically actuated nanoelectromechanical (NEM) switches hold promise for operation with sharply defined ON/OFF states, high ON/OFF current ratio, low OFF state power consumption, and a compact design. The present challenge for the development of nanoelectromechanical system (NEMS) technology is fabrication of single nanowire based NEM switches. In this work, we demonstrate the first application of CuO nanowires as NEM switch active elements. We develop bottom-up and top-down approaches for NEM switch fabrication, such as CuO nanowire synthesis, lithography, etching, dielectrophoretic alignment of nanowires on electrodes, and nanomanipulations for building devices that are suitable for scalable production. Theoretical modelling finds the device geometry that is necessary for volatile switching. The modelling results are validated by constructing gateless double-clamped and single-clamped devices on-chip that show robust and repeatable switching. The proposed design and fabrication route enable the scalable integration of bottom-up synthesized nanowires in NEMS.

3.
Nanomaterials (Basel) ; 10(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486063

ABSTRACT

Size distribution, Young's moduli and electrical resistivity are investigated for CuO nanowires synthesized by different thermal oxidation methods. Oxidation in dry and wet air were applied for synthesis both with and without an external electrical field. An increased yield of high aspect ratio nanowires with diameters below 100 nm is achieved by combining applied electric field and growth conditions with additional water vapour at the first stage of synthesis. Young's moduli determined from resonance and bending experiments show similar diameter dependencies and increase above 200 GPa for nanowires with diameters narrower than 50 nm. The nanowires synthesized by simple thermal oxidation possess electrical resistivities about one order of magnitude lower than the nanowires synthesized by electric field assisted approach in wet air. The high aspect ratio, mechanical strength and robust electrical properties suggest CuO nanowires as promising candidates for NEMS actuators.

4.
Nanoscale ; 11(28): 13612-13619, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31290891

ABSTRACT

Germanium tin (GeSn) has been proposed as a promising material for electronic and optical applications due to the formation of a direct band-gap at a Sn content >7 at%. Furthermore, the ability to manipulate the properties of GeSn at the nanoscale will further permit the realisation of advanced mechanical devices. Here we report for the first time the mechanical properties of GeSn nanowires (7.1-9.7 at% Sn) and assess their suitability as nanoelectromechanical (NEM) switches. Electron microscopy analysis showed the nanowires to be single crystalline, with surfaces covered by a thin native amorphous oxide layer. Mechanical resonance and bending tests at different boundary conditions were used to obtain size-dependent Young's moduli and to relate the mechanical characteristics of the alloy nanowires to geometry and Sn incorporation. The mechanical properties of the GeSn nanowires make them highly promising for applications in next generation NEM devices.

5.
Beilstein J Nanotechnol ; 9: 271-300, 2018.
Article in English | MEDLINE | ID: mdl-29441272

ABSTRACT

This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM switching devices is provided, and together with their operational parameters, the reliability issues and impact of the operating environment are discussed. Finally, the most common NEM switch failure modes and the physical mechanisms behind them are reviewed and solutions proposed.

6.
ACS Appl Mater Interfaces ; 8(19): 12257-62, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27111150

ABSTRACT

We demonstrate a simple low-cost method of preparation of layered devices for opto- and thermoelectric applications. The devices consist of a functional Bi2Se3 layer of randomly oriented nanoplates and flexible nanobelts enclosed between two flat indium tin oxide (ITO) electrodes. The number of functional interconnections between the ITO electrodes and correspondingly the efficiency of the device can be increased by gradual nanoelectromechanical (NEM) switching of flexible individual Bi2Se3 nanobelts in the circuit. NEM switching is achieved through applying an external voltage to the device. For the first time, we investigate in situ NEM switching and breakdown parameters of Bi2Se3 nanobelts, visualize the processes occurring in the device under the influence of applied external voltage, and establish the limitations to the possible operational conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...