Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Risk Anal ; 7: 8-28, 2017 Dec.
Article in English | MEDLINE | ID: mdl-32289058

ABSTRACT

This paper presents a quantitative assessment model for the risk of entry of zoonotic bat-borne viruses into the European Union (EU). The model considers four routes of introduction: human travel, legal trade of products, live animal imports and illegal import of bushmeat and was applied to five virus outbreak scenarios. Two scenarios were considered for Zaire ebolavirus (wEBOV, cEBOV) and other scenarios for Hendra virus, Marburg virus (MARV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The use of the same framework and generic data sources for all EU Member States (MS) allows for a relative comparison of the probability of virus introduction and of the importance of the routes of introduction among MSs. According to the model wEBOV posed the highest risk of an introduction event within the EU, followed by MARV and MERS-CoV. However, the main route of introduction differed, with wEBOV and MERS-CoV most likely through human travel and MARV through legal trade of foodstuffs. The relative risks to EU MSs as entry points also varied between outbreak scenarios, highlighting the heterogeneity in global trade and travel to the EU MSs. The model has the capability to allow for a continual updating of the risk estimate using new data as, and when, it becomes available. The model provides an horizon scanning tool for use when available data are limited and, therefore, the absolute risk estimates often have high uncertainty. Sensitivity analysis suggested virus prevalence in bats has a large influence on the results; a 90% reduction in prevalence reduced the risk of introduction considerably and resulted in the relative ranking of MARV falling below that for MERS-CoV, due to this parameter disproportionately affecting the risk of introduction from the trade route over human travel.

2.
PLoS One ; 11(10): e0165383, 2016.
Article in English | MEDLINE | ID: mdl-27788234

ABSTRACT

Bat-borne viruses have been linked to a number of zoonotic diseases; in 2014 there have been human cases of Nipah virus (NiV) in Bangladesh and Ebola virus in West and Central Africa. Here we describe a model designed to provide initial quantitative predictions of the risk of entry of such viruses to European Union (EU) Member States (MSs) through four routes: human travel, legal trade (e.g. fruit and animal products), live animal movements and illegal importation of bushmeat. The model utilises available datasets to assess the movement via these routes between individual countries of the world and EU MSs. These data are combined with virus specific data to assess the relative risk of entry between EU MSs. As a case study, the model was parameterised for NiV. Scenario analyses showed that the selection of exporting countries with NiV and potentially contaminated trade products were essential to the accuracy of all model outputs. Uncertainty analyses of other model parameters identified that the model expected number of years to an introduction event within the EU was highly susceptible to the prevalence of NiV in bats. The relative rankings of the MSs and routes, however, were more robust. The UK, the Netherlands and Germany were consistently the most likely points of entry and the ranking of most MSs varied by no more than three places (maximum variation five places). Legal trade was consistently the most likely route of entry, only falling below human travel when the estimate of the prevalence of NiV in bats was particularly low. Any model-based calculation is dependent on the data available to feed into the model and there are distinct gaps in our knowledge, particularly in regard to various pathogen/virus as well as host/bat characteristics. However, the strengths of this model lie in the provision of relative comparisons of risk among routes and MSs. The potential for expansion of the model to include other routes and viruses and the possibility of rapid parameterisation demonstrates its potential for use in an outbreak situation.


Subject(s)
Chiroptera/virology , European Union , Nipah Virus/physiology , Animals , Humans , Models, Statistical , Risk Assessment , Species Specificity , Travel , Uncertainty
3.
Risk Anal ; 30(5): 753-65, 2010 May.
Article in English | MEDLINE | ID: mdl-19919549

ABSTRACT

To address the risk posed to human health by the consumption of VTEC O157 within contaminated pork, lamb, and beef products within Great Britain, a quantitative risk assessment model has been developed. This model aims to simulate the prevalence and amount of VTEC O157 in different meat products at consumption within a single model framework by adapting previously developed models. The model is stochastic in nature, enabling both variability (natural variation between animals, carcasses, products) and uncertainty (lack of knowledge) about the input parameters to be modeled. Based on the model assumptions and data, it is concluded that the prevalence of VTEC O157 in meat products (joints and mince) at consumption is low (i.e., <0.04%). Beef products, particularly beef burgers, present the highest estimated risk with an estimated eight out of 100,000 servings on average resulting in human infection with VTEC O157.


Subject(s)
Escherichia coli Infections/etiology , Escherichia coli O157/isolation & purification , Meat Products/microbiology , Escherichia coli Infections/microbiology , Humans , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...