Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(18): 10113-8, 2001 Aug 28.
Article in English | MEDLINE | ID: mdl-11517308

ABSTRACT

Eukaryotic DNA repair enzymes must interact with the architectural hierarchy of chromatin. The challenge of finding damaged DNA complexed with histone proteins in nucleosomes is complicated by the need to maintain local chromatin structures involved in regulating other DNA processing events. The heterogeneity of lesions induced by DNA-damaging agents has led us to design homogeneously damaged substrates to directly compare repair of naked DNA with that of nucleosomes. Here we report that nucleotide excision repair in Xenopus nuclear extracts can effectively repair a single UV radiation photoproduct located 5 bases from the dyad center of a positioned nucleosome, although the nucleosome is repaired at about half the rate at which the naked DNA fragment is. Extract repair within the nucleosome is >50-fold more rapid than either enzymatic photoreversal or endonuclease cleavage of the lesion in vitro. Furthermore, nucleosome formation occurs (after repair) only on damaged naked DNA (165-bp fragments) during a 1-h incubation in these extracts, even in the presence of a large excess of undamaged DNA. This is an example of selective nucleosome assembly by Xenopus nuclear extracts on a short linear DNA fragment containing a DNA lesion.


Subject(s)
DNA Repair , Nucleosomes/metabolism , Animals , Base Sequence , DNA Damage , DNA Ligases/metabolism , Female , In Vitro Techniques , Nucleosomes/radiation effects , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/metabolism , Oligodeoxyribonucleotides/radiation effects , Photochemistry , Ultraviolet Rays , Xenopus
2.
J Biol Chem ; 275(29): 22355-62, 2000 Jul 21.
Article in English | MEDLINE | ID: mdl-10801836

ABSTRACT

Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.


Subject(s)
DNA Repair/genetics , Gene Expression Regulation , Adult , Animals , CHO Cells , Cricetinae , DNA Damage , Deoxyadenosines , Humans , Oxidative Stress , Rats , Xeroderma Pigmentosum
3.
Biochemistry ; 38(29): 9485-94, 1999 Jul 20.
Article in English | MEDLINE | ID: mdl-10413526

ABSTRACT

A strategy was developed to assemble nucleosomes specifically damaged at only one site and one structural orientation. The most prevalent UV photoproduct, a cis-syn cyclobutane thymine dimer (cs CTD), was chemically synthesized and incorporated into a 30 base oligonucleotide harboring the glucocorticoid hormone response element. This oligonucleotide was assembled into a 165 base pair double stranded DNA molecule with nucleosome positioning elements on each side of the cs CTD-containing insert. Proton NMR verified that the synthetic photoproduct is the cis-syn stereoisomer of the CTD. Moreover, two different pyrimidine dimer-specific endonucleases cut approximately 90% of the dsDNA molecules. This cleavage is completely reversed by photoreactivation with E. coli UV photolyase, further demonstrating the correct stereochemistry of the photoproduct. Nucleosomes were reconstituted by histone octamer exchange from chicken erythocyte core particles, and contained a unique translational and rotational setting of the insert on the histone surface. Hydroxyl radical footprinting demonstrates that the minor groove at the cs CTD is positioned away from the histone surface about 5 bases from the nucleosome dyad. Competitive gel-shift analysis indicates there is a small increase in histone binding energy required for the damaged fragment (DeltaDeltaG approximately 0.15 kcal/mol), which does not prevent complete nucleosome loading under our conditions. Finally, folding of the synthetic DNA into nucleosomes dramatically inhibits cleavage at the cs CTD by T4 endonuclease V and photoreversal by UV photolyase. Thus, specifically damaged nucleosomes can be experimentally designed for in vitro DNA repair studies.


Subject(s)
DNA Damage , DNA/chemical synthesis , DNA/radiation effects , Nucleosomes/chemistry , Ultraviolet Rays , Viral Proteins , Bacteriophage T4/enzymology , Base Composition , Base Sequence , DNA/metabolism , DNA Repair , Deoxyribonuclease (Pyrimidine Dimer) , Endodeoxyribonucleases/chemistry , Hydrolysis , Molecular Sequence Data , Nucleosomes/enzymology , Nucleosomes/metabolism , Pyrimidine Dimers/chemical synthesis , Pyrimidine Dimers/metabolism , Thionucleotides/chemical synthesis , Thionucleotides/metabolism , Thymine/chemical synthesis , Thymine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...