Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 10: 303-317, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28955758

ABSTRACT

80 rats, randomly selected, were divided into 3 treatment groups: pre-, co- and post-treatment; consisting of 6 sub-groups each (5 rats per sub-group): baseline, normal saline (2 mL), α-lipoic acid (20 mg/kg body weight), 200 mg/kg, 400 mg/kg or 800 mg/kg body weight Theobroma cacao stem bark aqueous extract (TCAE). All rats except for baseline group were intoxicated with 20 mg/kg body weight doxorubicin (DOX) intraperitoneally. The animals in pre- or post-treatment group received a single dose of DOX (20 mg/kg body weight) intraperitoneally 24 h before or after 7 days' oral administration with TCAE respectively while those in co-treatment group were co-administered 2.86 mg/kg body weight of DOX with either normal saline, α- lipoic acid or TCAE orally for 7 days. Animals were sacrificed (pre- and post- treatment groups were sacrificed on the ninth day while the co-treatment group sacrificed on the 8th day). Brain and heart tissue samples were harvested for enzyme markers of toxicity, oxidative stress and histopathological examinations. DOX intoxication caused significant decrease in activities of LDH and ACP, and increase in γGT and ALP activities in brain tissues while causing a significant increase in LDH, ACP, γGT activities and decrease in ALP activity in the cardiac tissues. DOX intoxication caused a significant increase in concentrations of H2O2 generated, MDA and PC, XO, MPx and NOX activities with concomitant decrease in CAT, SOD, GPx and GST activities, and in concentrations of GSH, AsA and α-Toc in brain and cardiac tissues. Pre-, co- and post-treatment with TCAE at either 200 mg/kg, 400 mg/kg or 800 mg/kg body weight significantly reversed the oxidative damage to the organs induced by DOX-intoxication. The result affirmed that T. cacao stem bark aqueous extract protected against DOX induced oxidative damage in brain and cardiac tissues of experimental rats.

2.
Afr J Med Med Sci ; 41 Suppl: 117-24, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23678646

ABSTRACT

The aim of the study was to investigate the protective effect of methyl jasmonate (MJ) in adriamycin (ADR) induced hepatic and renal toxicities. 36 BALB/c mice were randomly divided into control, ADR (20 mg/kg), MJ (50 mg/kg) only, MJ (100 mg/kg) only, MJ (50 mg/ kg) + ADR, MJ (100 mg/kg) + ADR groups (n = 6). The 2 doses of MJ was administered for 7 days in MJ only groups, ADR was administered intraperitoneally on the 8th day after pretreatment with the 2 different doses of MJ while ADR was administered on the 8th day only for the ADR only group. The malondialdehyde (MDA), glutathione (GSH), H2O2 generation, superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine in the liver, kidneys and serum samples as applicable were estimated. Tissue MDA, H2O2 generation, and GST activity were markedly elevated while GSH content, CAT and SOD activities were significantly reduced in the tissues when compared to the control (p < 0.05). Pretreatment with MJ ameliorated ADR toxicities, with a significant reduction in serum urea concentration, ALT activity, MDA level, H2O2 generation, GST activity and a significant elevation in GSH content, CAT and SOD activities in the organ tissues. MJ induced significant reduction in MDA level and increase of GSH content in liver and kidney tissues. This study suggests that MJ may play an overall protective effect on ADR-induced toxicities in liver and kidneys and the inhibition of tissue peroxidative damage might contribute to this beneficial effect.


Subject(s)
Acetates , Chemical and Drug Induced Liver Injury , Cyclopentanes , Doxorubicin/toxicity , Kidney Diseases , Kidney/drug effects , Liver/drug effects , Oxylipins , Acetates/administration & dosage , Acetates/pharmacology , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/physiopathology , Chemical and Drug Induced Liver Injury/prevention & control , Cyclopentanes/administration & dosage , Cyclopentanes/pharmacology , Dose-Response Relationship, Drug , Kidney/pathology , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Diseases/physiopathology , Kidney Diseases/prevention & control , Kidney Function Tests/methods , Liver/pathology , Liver Function Tests/methods , Mice , Mice, Inbred BALB C , Models, Animal , Oxylipins/administration & dosage , Oxylipins/pharmacology , Protective Agents/administration & dosage , Protective Agents/pharmacology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...