Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(2): 023303, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113443

ABSTRACT

An innovative 18 GHz HIISI (Heavy Ion Ion Source Injector) room temperature Electron Cyclotron Resonance (ECR) ion source (ECRIS) has been designed and constructed at the Department of Physics, University of Jyväskylä (JYFL), for the nuclear physics program of the JYFL Accelerator Laboratory. The primary objective of HIISI is to increase the intensities of medium charge states (M/Q ≅ 5) by a factor of 10 in comparison with the JYFL 14 GHz ECRIS and to increase the maximum usable xenon charge state from 35+ to 44+ to serve the space electronics irradiation testing program. HIISI is equipped with a refrigerated permanent magnet hexapole and a noncylindrical plasma chamber to achieve very strong radial magnetic confinement with Brad = 1.42 T. The commissioning of HIISI began in Fall 2017, and in Spring 2019, it has met the main objectives. As an example, the intensity of the Xe27+ ion beam has improved from 20 µA to 230 µA. In addition, the beam intensity of the Xe44+ ion beam has exceeded the requirement set by the irradiation testing program. The performance of HIISI is comparable to superconducting ECR ion sources with the same maximum microwave frequency of 18 GHz and a total power of 3 kW. For example, Ar16+ and Xe30+ ion beam intensities of 130 µA and 106 µA, respectively, have been obtained with a total microwave power of 3 kW distributed between 18, 17.4, and 14.5 GHz frequencies. The ion beams have been extracted through an 8 mm plasma electrode aperture using 15-17 kV extraction voltage. The latest development work, extracted ion beam intensities, special features, and future prospects of HIISI are presented in this paper.

2.
Rev Sci Instrum ; 91(1): 013304, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012571

ABSTRACT

Cumulative ion confinement times are probed by measuring decaying ion current transients in pulsed material injection mode. The method is applied in a charge breeder and conventional ECRIS yielding mutually corroborative results. The cumulative confinement time estimates vary from approximately 2 ms-60 ms with a clear dependence on the ion charge-to-mass ratio-higher charges having longer residence times. The long cumulative confinement times are proposed as a partial explanation to recently observed unexpectedly high ion temperatures. The results are relevant for rare ion beam (RIB) production as the confinement time and the lifetime of stable isotopes can be used for estimating the extracted RIB production efficiency.

3.
Rev Sci Instrum ; 91(1): 013318, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-32012583

ABSTRACT

Electron Cyclotron Resonance Ion Source (ECRIS) plasmas contain high-energy electrons and highly charged ions implying that only noninvasive methods such as optical emission spectroscopy are reliable in their characterization. A high-resolution spectrometer (10 pm FWHM at 632 nm) enabling the detection of weak emission lines has been developed at University of Jyväskylä, Department of Physics (JYFL) for this purpose. Diagnostics results probing the densities of ions, neutral atoms, and the temperature of the cold electron population in the JYFL 14 GHz ECRIS are described. For example, it has been observed that the cold electron temperature drops from 40 eV to 20 eV when the extraction voltage of the ion source is switched off, accompanied by two orders of magnitude decrease in Ar9+ optical emission intensity, suggesting that diagnostics results of ECRIS plasmas obtained without the extraction voltage are not depicting the plasma conditions of normal ECRIS operation. The relative changes of the plasma optical emission and the ion beam current have been measured in CW and amplitude modulation operation mode of microwave injection. It is concluded that in the CW mode, the ion currents could be limited by diffusion transport and electrostatic confinement of the ions rather than beam formation in the extraction region and subsequent transport. The high resolution of the spectrometer allows determining the ion temperature by measuring the Doppler broadening of the emission lines and subtracting the wavelength dependent instrumental broadening. The measured ion temperatures in the JYFL 14 GHz ECRIS are between 5 and 28 eV, depending on the plasma species and charge state. Gas mixing is shown to be an effective method to decrease the ion temperature of high charge state argon ions from 20 eV in pure argon discharge to 5 eV when mixed with oxygen.

SELECTION OF CITATIONS
SEARCH DETAIL
...