Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(39): 44527-44538, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36128960

ABSTRACT

The preparation of composite materials is a promising methodology for concurrent optimization of electrical and thermal transport properties for improved thermoelectric (TE) performance. This study demonstrates how the acoustic impedance mismatch (AIM) and the work function of components decouple the TE parameters to achieve enhanced TE performance of the (1-z)Ge0.87Mn0.05Sb0.08Te-(z)WC composite. The simultaneous increase in the electrical conductivity (σ) and Seebeck coefficient (α) with WC (tungsten carbide) volume fraction (z) results in an enhanced power factor (α2σ) in the composite. The rise in σ is attributed to the creation of favorable current paths through the WC phase located between grains of Ge0.87Mn0.05Sb0.08Te, which leads to increased carrier mobility in the composite. Detailed analysis of the obtained electrical properties was performed via Kelvin probe force microscopy (work function measurement) and atomic force microscopy techniques (spatial current distribution map and current-voltage (I-V) characteristics), which are further supported by density functional theory (DFT) calculations. Furthermore, the difference in elastic properties (i.e., sound velocity) between Ge0.87Mn0.05Sb0.08Te and WC results in a high AIM, and hence, a large interface thermal resistance (Rint) between the phases is achieved. The correlation between Rint and the Kapitza radius depicts a reduced phonon thermal conductivity (κph) of the composite, which is explained using the Bruggeman asymmetrical model. Moreover, the decrease in κph is further validated by phonon dispersion calculations that indicate the decrease in phonon group velocity in the composite. The simultaneous effect of enhanced α2σ and reduced κph results in a maximum figure of merit (zT) of 1.93 at 773 K for (1-z)Ge0.87Mn0.05Sb0.08Te-(z)WC composite for z = 0.010. It results in an average thermoelectric figure of merit (zTav) of 1.02 for a temperature difference (ΔT) of 473 K. This study shows promise to achieve higher zTav across a wide range of composite materials.

2.
Materials (Basel) ; 15(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35160795

ABSTRACT

Because of the large Seebeck coefficient, low thermal conductivity, and earth-abundant nature of components, tetrahedrites are promising thermoelectric materials. DFT calculations reveal that the additional copper atoms in Cu-rich Cu14Sb4S13 tetrahedrite can effectively engineer the chemical potential towards high thermoelectric performance. Here, the Cu-rich tetrahedrite phase was prepared using a novel approach, which is based on the solvothermal method and piperazine serving both as solvent and reagent. As only pure elements were used for the synthesis, the offered method allows us to avoid the typically observed inorganic salt contaminations in products. Prepared in such a way, Cu14Sb4S13 tetrahedrite materials possess a very high Seebeck coefficient (above 400 µVK-1) and low thermal conductivity (below 0.3 Wm-1K-1), yielding to an excellent dimensionless thermoelectric figure of merit ZT ≈ 0.65 at 723 K. The further enhancement of the thermoelectric performance is expected after attuning the carrier concentration to the optimal value for achieving the highest possible power factor in this system.

3.
Dalton Trans ; 50(4): 1261-1273, 2021 Feb 02.
Article in English | MEDLINE | ID: mdl-33393545

ABSTRACT

Systematic experimental and theoretical research on the role of microstructure and interface thermal resistance on the thermal conductivity of the PbTe-CoSb3 bulk polycrystalline composite is presented. In particular, the correlation between the particle size of the dispersed phase and interface thermal resistance (Rint) on the phonon thermal conductivity (κph) is discussed. With this aim, a series of PbTe-CoSb3 polycrystalline composite materials with different particle sizes of CoSb3 was prepared. The structural (XRD) and microstructural analysis (SEM/EDXS) confirmed the intended chemical and phase compositions. Acoustic impedance difference (ΔZ) was determined from measured sound velocities in PbTe and CoSb3 phases. It is shown that κph of the composite may be reduced when particle size of the dispersed phase (CoSb3) is smaller than the critical value of ∼230 nm. This relationship was concluded to be crucial for controlling the heat transport phenomena in composite thermoelectric materials. The selection of the components with different elastic properties (acoustic impedance) and particle size smaller than Kapitza radius leads to a new direction in the engineering of composite TE materials with designed thermal properties.

4.
Chemphyschem ; 19(13): 1617-1626, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29633465

ABSTRACT

The growing demand for clean energy catalyzes the development of new devices capable of generating electricity from renewable energy resources. One of the possible approaches focuses on the use of thermoelectric materials (TE), which may utilize waste heat, water, and solar thermal energy to generate electrical power. An improvement of the performance of such devices may be achieved through the development of composites made of an organic matrix filled with nanostructured thermoelectric materials working in a synergetic way. The first step towards such designs requires a better understanding of the fundamental interactions between available materials. In this paper, this matter is investigated and the questions regarding the change of electrical and thermal properties of nanocomposites based on low-conductive polypyrrole enriched with bismuth nanowires of well-defined geometry and morphology is answered. It is clearly demonstrated that the electrical conductivity and the Seebeck coefficient may be tuned either simultaneously or separately within particular Bi NWs content ranges, and that both parameters may be increased at the same time.

SELECTION OF CITATIONS
SEARCH DETAIL
...