Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 32(7): 1523-1533.e6, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35235767

ABSTRACT

Fungi and bacteria are ubiquitous constituents of all microbiomes, yet mechanisms of microbial persistence in polymicrobial communities remain obscure. Here, we examined the hypothesis that specialized fungal survival structures, chlamydospores, induced by bacterial lipopeptides serve as bacterial reservoirs. We find that symbiotic and pathogenic gram-negative bacteria from non-endosymbiotic taxa enter and propagate in chlamydospores. Internalized bacteria have higher fitness than planktonic bacteria when challenged with abiotic stress. Further, tri-cultures of Ralstonia solanacearum, Pseudomonas aeruginosa, and Aspergillus flavus reveal the unprecedented finding that chlamydospores are colonized by endofungal bacterial communities. Our work identifies a previously unknown ecological role of chlamydospores, provides an expanded view of microbial niches, and presents significant implications for the persistence of pathogenic and beneficial bacteria.


Subject(s)
Microbiota , Ralstonia solanacearum , Bacteria , Fungi , Housing , Symbiosis
2.
Microorganisms ; 9(10)2021 Oct 09.
Article in English | MEDLINE | ID: mdl-34683444

ABSTRACT

In order to gain a comprehensive understanding of plant disease in natural and agricultural ecosystems, it is essential to examine plant disease in multi-pathogen-host systems. Ralstonia solanacearum and Fusarium oxysporum f. sp. lycopersici are vascular wilt pathogens that can result in heavy yield losses in susceptible hosts such as tomato. Although both pathogens occupy the xylem, the costs of mixed infections on wilt disease are unknown. Here, we characterize the consequences of co-infection with R. solanacearum and F. oxysporum using tomato as the model host. Our results demonstrate that bacterial wilt severity is reduced in co-infections, that bikaverin synthesis by Fusarium contributes to bacterial wilt reduction, and that the arrival time of each microbe at the infection court is important in driving the severity of wilt disease. Further, analysis of the co-infection root secretome identified previously uncharacterized secreted metabolites that reduce R. solanacearum growth in vitro and provide protection to tomato seedlings against bacterial wilt disease. Taken together, these results highlight the need to understand the consequences of mixed infections in plant disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...