Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 1532, 2023 01 27.
Article in English | MEDLINE | ID: mdl-36707664

ABSTRACT

Flap loss through limited perfusion remains a major complication in reconstructive surgery. Continuous monitoring of perfusion will facilitate early detection of insufficient perfusion. Remote or imaging photoplethysmography (rPPG/iPPG) as a non-contact, non-ionizing, and non-invasive monitoring technique provides objective and reproducible information on physiological parameters. The aim of this study is to establish rPPG for intra- and postoperative monitoring of flap perfusion in patients undergoing reconstruction with free fasciocutaneous flaps (FFCF). We developed a monitoring algorithm for flap perfusion, which was evaluated in 15 patients. For 14 patients, ischemia of the FFCF in the forearm and successful reperfusion of the implanted FFCF was quantified based on the local signal. One FFCF showed no perfusion after reperfusion and devitalized in the course. Intraoperative monitoring of perfusion with rPPG provides objective and reproducible results. Therefore, rPPG is a promising technology for standard flap perfusion monitoring on low costs without the need for additional monitoring devices.


Subject(s)
Free Tissue Flaps , Photoplethysmography , Humans , Free Tissue Flaps/blood supply , Perfusion , Monitoring, Intraoperative , Monitoring, Physiologic/methods
2.
J Med Imaging (Bellingham) ; 7(6): 065001, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33241074

ABSTRACT

Purpose: Hyperspectral imaging (HSI) is a non-contact optical imaging technique with the potential to serve as an intraoperative computer-aided diagnostic tool. Our work analyzes the optical properties of visible structures in the surgical field for automatic tissue categorization. Approach: Building an HSI-based computer-aided tissue analysis system requires accurate ground truth and validation of optical soft tissue properties as these show large variability. We introduce and validate two different hyperspectral intraoperative imaging setups and their use for the analysis of optical tissue properties. First, we present an improved multispectral filter-wheel setup integrated into a fully digital microscope. Second, we present a novel setup of two hyperspectral snapshot cameras for intraoperative usage. Both setups are operating in the spectral range of 400 up to 975 nm. They are calibrated and validated using the same database and calibration set. Results: For validation, a color chart with 18 well-defined color spectra in the visual range is analyzed. Thus the results acquired with both settings become transferable and comparable to each other as well as between different interventions. On patient data of two different otorhinolaryngology procedures, we analyze the optical behaviors of different soft tissues and show a visualization of such different spectral information. Conclusion: The introduced calibration pipeline for different HSI setups allows comparison between all acquired spectral information. Clinical in vivo data underline the potential of HSI as an intraoperative diagnostic tool and the clinical usability of both introduced setups. Thereby, we demonstrate their feasibility for the in vivo analysis and categorization of different human soft tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...