Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Ecol Evol ; 6(8): 1145-1154, 2022 08.
Article in English | MEDLINE | ID: mdl-35798840

ABSTRACT

Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.


Subject(s)
Mycorrhizae , Pesticides , Agriculture , Plants/microbiology , Soil , Soil Microbiology
2.
J Med Microbiol ; 65(1): 91-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26489840

ABSTRACT

Chlamydia trachomatis is one of the most common sexually transmitted pathogens in the world and often causes chronic inflammatory diseases that are insensitive to antibiotics. The type 3 secretion system (T3SS) of pathogenic bacteria is a promising target for therapeutic intervention aimed at bacterial virulence and can be an attractive alternative for the treatment of chronic infections. Recently, we have shown that a small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones produced through the chemical modification of the thiohydrazides of oxamic acids, designated CL-55, inhibited the intracellular growth of C. trachomatis in a T3SS-dependent manner. To assess the feasibility of CL-55 as a therapeutic agent, our aim was to determine which point(s) in the developmental cycle CL-55 affects. We found that CL-55 had no effect on the adhesion of elementary bodies (EBs) to host cells but significantly suppressed EB internalization. We further found that CL-55 inhibited the intracellular division of reticulate bodies (RBs). An ultrastructural analysis revealed loss of contact between the RBs and the inclusion membrane in the presence of CL-55. Finally, we found that our T3SS inhibitor prevented the persistence of Chlamydia in cell culture and its reversion to the infectious state. Our findings indicate that our T3SS inhibitor may be effective in the treatment of both productive and persistent infections.


Subject(s)
Chlamydia trachomatis/drug effects , Thiadiazines/pharmacology , Animals , Bacterial Adhesion/drug effects , Bacterial Proteins , Cell Line , Chlamydia trachomatis/growth & development , Dose-Response Relationship, Drug , Mice , Molecular Weight , Penicillins/pharmacology , Thiadiazines/chemistry , Type III Secretion Systems/antagonists & inhibitors
3.
Biomed Res Int ; 2013: 489489, 2013.
Article in English | MEDLINE | ID: mdl-23509729

ABSTRACT

Extragenital chlamydial complications may be associated with systemic spread of infection, but haematogenous route for C. trachomatis dissemination has not been clearly demonstrated. Here we report that serum specimens obtained from patients with chlamydiosis contain elementary bodies of C. trachomatis shown by culture and immunogold electron microscopy. We have found that 31 of the 52 patients had serum precipitates which were infective to McCoy cells. Immunostaining revealed very small inclusions resembling those reported during persistent C. trachomatis infection in vitro. DNA specimens from 49 (out of 52) patients with chlamydiosis gave positive PCR readings. The viability of the pathogen present in the sera was confirmed by chlamydial RNA detection in the cell monolayer inoculated by the serum precipitates. By using DNA isolation protocol from 1 mL of serum and quantitative TaqMan PCR, it was estimated that bacterial load in patients' sera was 2 × 10(2)-10(3) GE/mL. These findings for the first time demonstrated that C. trachomatis can be disseminated directly by the plasma, independently from blood cell, which may represent a new possible pathway of the chronic infection development. Therefore, new methodological approaches for detection of C. trachomatis in the serum of patients with complicated and chronic chlamydiosis could be important in the diagnosis of the infection regardless of its anatomical localization.


Subject(s)
Chlamydia Infections/blood , Chlamydia Infections/microbiology , Chlamydia trachomatis/isolation & purification , DNA, Bacterial/analysis , Urogenital System/microbiology , Adult , Female , Humans , Immunohistochemistry , Male , Microscopy, Fluorescence , Middle Aged , Plasma/microbiology , Polymerase Chain Reaction , RNA, Ribosomal, 16S/analysis , Reproducibility of Results , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL