Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
PLoS One ; 10(11): e0142625, 2015.
Article in English | MEDLINE | ID: mdl-26579717

ABSTRACT

Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three ß-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.


Subject(s)
Allergens/immunology , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Parvalbumins/immunology , Allergens/isolation & purification , Animals , Cross Reactions/immunology , Epitope Mapping , Epitopes/immunology , Fishes/immunology , Humans , Immunoglobulin E/isolation & purification , Parvalbumins/isolation & purification , Single-Chain Antibodies/immunology
3.
Proteins ; 82(11): 3032-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25116395

ABSTRACT

Beta-parvalbumins from different fish species have been identified as the main elicitors of IgE-mediated reactions in fish-allergic individuals. Here, we report for the first time the NMR determination of the structure and dynamics of the major Atlantic cod (Gadus morhua) allergen Gad m 1 and compare them with other known parvalbumins. Although the Gad m 1 structure and accessibility of putative IgE epitopes are similar to parvalbumins in mackerel and carp, the charge distribution at the putative epitopes is different. The determination of the Gad m 1 structure contributes to a better understanding of cross-reactivity among fish parvalbumins. In addition, the high-pressure NMR and temperature variation experiments revealed the important contribution of the AB motif and other regions to the protein folding. This structural information could assist the future identification of hot spots for targeted mutations to develop hypoallergenic Ca(2+) -free forms for potential use in immunotherapy.


Subject(s)
Fish Proteins/chemistry , Fish Proteins/immunology , Gadus morhua , Parvalbumins/chemistry , Parvalbumins/immunology , Allergens/chemistry , Allergens/immunology , Amino Acid Sequence , Animals , Binding Sites , Calcium/metabolism , Cross Reactions , Fish Proteins/genetics , Fish Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular/methods , Parvalbumins/genetics , Parvalbumins/metabolism , Pressure , Protein Conformation , Protein Stability , Solutions , Structural Homology, Protein , Temperature
4.
J Allergy Clin Immunol ; 132(1): 118-24, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23465659

ABSTRACT

BACKGROUND: Ara h 1, a vicilin; Ara h 2, a 2S albumin; and Ara h 3, a legumin, are major peanut allergens. Ara h 2 is an important predictor of clinical reactivity to peanut, but cosensitization to all 3 allergens is correlated with the severity of patients' symptoms. OBJECTIVE: We investigated whether cosensitization to these 3 allergens is caused by IgE cross-reactivity, despite the fact that they do not display obvious structural or sequence similarities. METHODS: IgE cross-inhibitions were performed with purified Ara h 1, Ara h 2, and Ara h 3 and IgG-depleted sera from 10 patients with peanut allergy. After an in silico search for similar peptides, IgE ELISA inhibition assays with synthetic peptides were performed. RESULTS: Ara h 2 inhibited IgE binding to Ara h 1 (average, 86% ± 13%) and Ara h 3 (average, 96% ± 6%). IgE binding to Ara h 2 was inhibited by Ara h 1 by 78% ± 15% and by Ara h 3 by 80% ± 6%. A subsequent sequence comparison showed that these nonhomologous allergens contained several similar surface-exposed peptides. IgE binding to Ara h 2-derived peptides was completely inhibited by Ara h 1 and Ara h 3. A mixture of these peptides reduced IgE binding to Ara h 1 and Ara h 3 by 20% to 60% and to Ara h 2 by 49% to 89%. CONCLUSION: Occurrence of similar sequences in the 3 major peanut allergens accounts for the high extent of cross-reactivity among them.


Subject(s)
2S Albumins, Plant/immunology , Antigens, Plant/immunology , Glycoproteins/immunology , Immunoglobulin E/immunology , Plant Proteins/immunology , Seed Storage Proteins/immunology , Amino Acid Sequence , Cross Reactions , Humans , Membrane Proteins , Molecular Sequence Data
5.
ISME J ; 5(6): 986-98, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21228893

ABSTRACT

Selection of a specific microbial partner by the host is an all-important process. It guarantees the persistence of highly specific symbioses throughout host generations. The cuticle of the marine nematode Laxus oneistus is covered by a single phylotype of sulfur-oxidizing bacteria. They are embedded in a layer of host-secreted mucus containing the mannose-binding protein Mermaid. This Ca(2+)-dependent lectin mediates symbiont aggregation and attachment to the nematode. Here, we show that Stilbonema majum-a symbiotic nematode co-occurring with L. oneistus in shallow water sediment-is covered by bacteria phylogenetically distinct to those covering L. oneistus. Mermaid cDNA analysis revealed extensive protein sequence variability in both the nematode species. We expressed three recombinant Mermaid isoforms, which based on the structural predictions display the most different carbohydrate recognition domains (CRDs). We show that the three CRDs (DNT, DDA and GDA types) possess different affinities for L. oneistus and S. majum symbionts. In particular, the GDA type, exclusively expressed by S. majum, displays highest agglutination activity towards its symbionts and lowest towards its L. oneistus symbionts. Moreover, incubation of L. oneistus in the GDA type does not result in complete symbiont detachment, whereas incubation in the other types does. This indicates that the presence of particular Mermaid isoforms on the nematode surface has a role in the attachment of specific symbionts. This is the first report of the functional role of sequence variability in a microbe-associated molecular patterns receptor in a beneficial association.


Subject(s)
Bacteria/isolation & purification , Bacterial Physiological Phenomena , Helminth Proteins/chemistry , Mannose-Binding Lectin/chemistry , Nematoda/microbiology , Receptors, Pattern Recognition/chemistry , Symbiosis , Amino Acid Sequence , Animals , Bacteria/classification , Bacteria/genetics , Mannose-Binding Lectins/genetics , Models, Molecular , Molecular Sequence Data , Nematoda/genetics , Nematoda/physiology , Phylogeny , Protein Isoforms/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...