Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(39): 8691-8696, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37733610

ABSTRACT

The inclusion of electronic polarization is of crucial importance in molecular simulations of systems containing charged moieties. When neglected, as often done in force field simulations, charge-charge interactions in solution may become severely overestimated, leading to unrealistically strong bindings of ions to biomolecules. The electronic continuum correction introduces electronic polarization in a mean-field way via scaling of charges by the reciprocal of the square root of the high-frequency dielectric constant of the solvent environment. Here, we use ab initio molecular dynamics simulations to quantify the effect of electronic polarization on pairs of like-charged ions in a model nonaqueous environment where electronic polarization is the only dielectric response. Our findings confirm the conceptual validity of this approach, underlining its applicability to complex aqueous biomolecular systems. Simultaneously, the results presented here justify the potential employment of weaker charge scaling factors in force field development.

2.
J Phys Chem Lett ; 14(19): 4403-4408, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37140439

ABSTRACT

We employed density functional theory-based ab initio molecular dynamics simulations to examine the hydration structure of several common alkali and alkali earth metal cations. We found that the commonly used atom pairwise dispersion correction scheme D3, which assigns dispersion coefficients based on the neutral form of the atom rather than its actual oxidation state, leads to inaccuracies in the hydration structures of these cations. We evaluated this effect for lithium, sodium, potassium, and calcium and found that the inaccuracies are particularly pronounced for sodium and potassium compared to the experiment. To remedy this issue, we propose disabling the D3 correction specifically for all cation-including pairs, which leads to a much better agreement with experimental data.

3.
J Chem Phys ; 157(22): 224306, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36546796

ABSTRACT

It is well established that an isolated benzene radical anion is not electronically stable. In the present study, we experimentally show that electron attachment to benzene clusters leads to weak albeit unequivocal occurrence of a C6H6 - moiety. We propose here-based on electronic structure calculation-that this moiety actually corresponds to linear structures formed by the opening of the benzene ring via electron attachment. The cluster environment is essential in this process since it quenches the internal energy released upon ring opening, which in the gas phase leads to further dissociation of this anion.

4.
J Am Chem Soc ; 144(48): 22093-22100, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36442139

ABSTRACT

Birch reduction is a time-proven way to hydrogenate aromatic hydrocarbons (such as benzene), which relies on the reducing power of electrons released from alkali metals into liquid ammonia. We have succeeded to characterize the key intermediates of the Birch reduction process─the solvated electron and dielectron and the benzene radical anion─using cyclic voltammetry and photoelectron spectroscopy, aided by electronic structure calculations. In this way, we not only quantify the electron binding energies of these species, which are decisive for the mechanism of the reaction, but also use Birch reduction as a case study to directly connect the two seemingly unrelated experimental techniques.

5.
J Chem Phys ; 156(1): 014501, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34998349

ABSTRACT

The benzene radical anion is a molecular ion pertinent to several organic reactions, including the Birch reduction of benzene in liquid ammonia. The species exhibits a dynamic Jahn-Teller effect due to its open-shell nature and undergoes pseudorotation of its geometry. Here, we characterize the complex electronic structure of this condensed-phase system based on ab initio molecular dynamics simulations and GW calculations of the benzene radical anion solvated in liquid ammonia. Using detailed analysis of the molecular and electronic structure, we find that the spatial character of the excess electron of the solvated radical anion follows the underlying Jahn-Teller distortions of the molecular geometry. We decompose the electronic density of states to isolate the contribution of the solute and to examine the response of the solvent to its presence. Our findings show the correspondence between instantaneous molecular structure and spin density; provide important insights into the electronic stability of the species, revealing that it is, indeed, a bound state in the condensed phase; and offer electronic densities of states that aid in the interpretation of experimental photoelectron spectra.

6.
J Phys Chem B ; 126(1): 229-238, 2022 01 13.
Article in English | MEDLINE | ID: mdl-34935378

ABSTRACT

We report valence band photoelectron spectroscopy measurements of gas-phase and liquid-phase benzene as well as those of benzene dissolved in liquid ammonia, complemented by electronic structure calculations. The origins of the sizable gas-to-liquid-phase shifts in electron binding energies deduced from the benzene valence band spectral features are quantitatively characterized in terms of the Born-Haber solvation model. This model also allows to rationalize the observation of almost identical shifts in liquid ammonia and benzene despite the fact that the former solvent is polar while the latter is not. For neutral solutes like benzene, it is the electronic polarization response determined by the high frequency dielectric constant of the solvent, which is practically the same in the two liquids, that primarily determines the observed gas-to-liquid shifts.


Subject(s)
Ammonia , Benzene , Electrons , Photoelectron Spectroscopy , Solvents
7.
Nature ; 595(7869): 673-676, 2021 07.
Article in English | MEDLINE | ID: mdl-34321671

ABSTRACT

Insulating materials can in principle be made metallic by applying pressure. In the case of pure water, this is estimated1 to require a pressure of 48 megabar, which is beyond current experimental capabilities and may only exist in the interior of large planets or stars2-4. Indeed, recent estimates and experiments indicate that water at pressures accessible in the laboratory will at best be superionic with high protonic conductivity5, but not metallic with conductive electrons1. Here we show that a metallic water solution can be prepared by massive doping with electrons upon reacting water with alkali metals. Although analogous metallic solutions of liquid ammonia with high concentrations of solvated electrons have long been known and characterized6-9, the explosive interaction between alkali metals and water10,11 has so far only permitted the preparation of aqueous solutions with low, submetallic electron concentrations12-14. We found that the explosive behaviour of the water-alkali metal reaction can be suppressed by adsorbing water vapour at a low pressure of about 10-4 millibar onto liquid sodium-potassium alloy drops ejected into a vacuum chamber. This set-up leads to the formation of a transient gold-coloured layer of a metallic water solution covering the metal alloy drops. The metallic character of this layer, doped with around 5 × 1021 electrons per cubic centimetre, is confirmed using optical reflection and synchrotron X-ray photoelectron spectroscopies.

8.
J Phys Chem A ; 125(26): 5811-5818, 2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34165987

ABSTRACT

The benzene radical anion, well-known in organic chemistry as the first intermediate in the Birch reduction of benzene in liquid ammonia, exhibits intriguing properties from the point of view of quantum chemistry. Notably, it has the character of a metastable shape resonance in the gas phase, while measurements in solution find it to be experimentally detectable and stable. In this light, our previous calculations performed in bulk liquid ammonia explicitly reveal that solvation leads to stabilization. Here, we focus on the transition of the benzene radical anion from an unstable gas-phase ion to a fully solvated bound species by explicit ionization calculations of the radical anion solvated in molecular clusters of increasing size. The computational cost of the largest systems is mitigated by combining density functional theory with auxiliary methods including effective fragment potentials or approximating the bulk by polarizable continuum models. Using this methodology, we obtain the cluster size dependence of the vertical binding energy of the benzene radical anion converging to the value of -2.3 eV at a modest computational cost.

SELECTION OF CITATIONS
SEARCH DETAIL
...