Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Mol Biol (Mosk) ; 55(1): 20-41, 2021.
Article in Russian | MEDLINE | ID: mdl-33566023

ABSTRACT

Protein synthesis on ribosomes is considered the main process in cell life. Regulation of ribosomal protein gene expression plays an important role in the balanced synthesis of proteins and RNA in ribosomal biogenesis. This review is focused on some features of autoregulation of ribosomal protein synthesis in prokaryotes. Inhibition of the synthesis of ribosomal proteins encoded by 12 operons by mechanisms of competition , "entrapment", and retroregulation are discussed. Examples of regulation of protein synthesis by individual ribosomal proteins and their complexes are presented.


Subject(s)
Escherichia coli , Protein Biosynthesis , Escherichia coli/genetics , Operon , RNA, Ribosomal/metabolism , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/metabolism
2.
Biochemistry (Mosc) ; 84(Suppl 1): S193-S205, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31213202

ABSTRACT

Cytokines of the IL-17 family play a key role in the host organism defense against bacterial and fungal infections. At the same time, upregulated synthesis of IL-17 cytokines is associated with immunoinflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, systemic lupus erythematosus, and others. The members of this family are important therapeutic targets in the treatment of various human chronic inflammatory disorders. Elucidation of signaling pathways involving IL-17 family proteins and analysis of the structure of cytokine complexes with specific antibodies, inhibitors, and receptors are essential for the development of new drugs for the therapy of immunoinflammatory rheumatic diseases.


Subject(s)
Autoimmune Diseases/immunology , Interleukin-17 , Molecular Targeted Therapy , T-Lymphocytes/immunology , Antibodies, Monoclonal/pharmacology , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-17/chemistry , Interleukin-17/physiology , Protein Structure, Quaternary , Signal Transduction
3.
Mol Biol (Mosk) ; 52(1): 29-35, 2018.
Article in Russian | MEDLINE | ID: mdl-29512633

ABSTRACT

Laccase belongs to the family of copper-containing oxidases. A study was made of the mechanism that sustains the incorporation of copper ions into the T2/T3 centers of recombinant two-domain laccase Streptomyces griseoflavus Ac-993. The occupancy of the T3 center by copper ions was found to increase with an increasing copper content in the culture medium and after dialysis of the protein preparation against a copper sulfate-containing buffer. The T2 center was filled only when overproducer strain cells were grown at a higher copper concentration in the medium. Two-domain laccases were assumed to possess a channel that serves to deliver copper ions to the T3 center during the formation of the three-dimensional laccase conformation and dialysis of the protein preparation. A narrower channel leads to the T2 center in two-domain laccases compared with three-domain ones, rendering the center less accessible for copper atoms. The incorporation of copper ions into the T2 center of two-domain laccases is likely to occur in the course of their biosynthesis or the formation of a functional trimer.


Subject(s)
Bacterial Proteins/chemistry , Copper/chemistry , Laccase/chemistry , Streptomyces/chemistry , Crystallography, X-Ray , Ions
4.
Mol Biol (Mosk) ; 52(1): 98-105, 2018.
Article in Russian | MEDLINE | ID: mdl-29512641

ABSTRACT

The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.


Subject(s)
Bacterial Proteins/chemistry , Ribosomal Proteins/chemistry , Thermotoga maritima/chemistry , Thermus thermophilus/chemistry , Binding Sites , RNA, Messenger/chemistry
5.
Mol Biol (Mosk) ; 52(1): 106-111, 2018.
Article in Russian | MEDLINE | ID: mdl-29512642

ABSTRACT

The L1 protuberance of the ribosome includes two domain ribosomal protein L1 and three helices of 23S rRNA (H76, H77, and H78) with interconnecting loops A and B. Helix 78 consists of two parts, i.e., H78a and H78b. A comparison of the available structural data of L1-RNA complexes with the obtained kinetic data made it possible to determine the influence of the nonconserved regions of Thermus thermophilus L1-protuberance on the mutual affinity of the L1 protein and 23S rRNA. It has been shown that the N-terminal helix of the protein and 78b helix of 23S rRNA are essential for the formation of an additional intermolecular contact, which is separated in the protein from the main site of L1-rRNA interaction by a flexible connection. This results in a rise in the TthL1-rRNA affinity. At the same time, the elongation of the 76 helix has no effect on rRNA-protein binding.


Subject(s)
Bacterial Proteins/chemistry , RNA, Ribosomal, 23S/chemistry , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Thermus thermophilus/chemistry , Kinetics , Nucleic Acid Conformation , Protein Binding
6.
Biochemistry (Mosc) ; 79(1): 69-76, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24512666

ABSTRACT

Ribosomal protein L4 is a regulator of protein synthesis in the Escherichia coli S10 operon, which contains genes of 11 ribosomal proteins. In this work, we have investigated regulatory functions of ribosomal protein L4 of the thermophilic archaea Methanococcus jannaschii. The S10-like operon from M. jannaschii encodes not 11, but only five ribosomal proteins (L3, L4, L23, L2, S19), and the first protein is L3 instead of S10. We have shown that MjaL4 and its mutant form lacking an elongated loop specifically inhibit expression of the first gene of the S10-like operon from the same organism in a coupled transcription-translation system in vitro. By deletion analysis, an L4-binding regulatory site has been found on MjaL3 mRNA, and a fragment of mRNA with length of 40 nucleotides has been prepared that is necessary and sufficient for the specific interaction with the MjaL4 protein.


Subject(s)
Methanocaldococcus/metabolism , Ribosomal Proteins/metabolism , Escherichia coli/metabolism , Kinetics , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Ribosomal Proteins/chemistry , Temperature
7.
Mol Biol (Mosk) ; 41(4): 688-96, 2007.
Article in Russian | MEDLINE | ID: mdl-17936990

ABSTRACT

Nine mutant forms of ribosomal proteins L1 from the bacterium Thermus thermophilus and the archaeon Methanococcus jannaschii were obtained. Their crystal structures were determined and analyzed. Earlier determined structure of S179C TthL1 was also thoroughly analyzed. Five from ten mutant proteins reveal essential changes of spatial structure caused by surface point mutation. It proves that for correct studies of biological processes by site-directed mutagenesis it is necessary to determine or at least to model spatial structures of mutant proteins. Detailed comparison of mutant L1 structures with that of corresponding wild type proteins reveals that side chain of a mutated amino acid residue tries to locate like the side chain of the original residue in the wild type protein. This observation helps to model the mutant structures.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Ribosomal Proteins/chemistry , Ribosomal Proteins/genetics , Amino Acid Sequence , Crystallography, X-Ray , Methanococcus/metabolism , Molecular Sequence Data , Mutation , Protein Conformation , Thermus thermophilus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...