Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(46): e2302655120, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37934822

ABSTRACT

Reading danger signals may save an animal's life, and learning about threats from others allows avoiding first-hand aversive and often fatal experiences. Fear expressed by other individuals, including those belonging to other species, may indicate the presence of a threat in the environment and is an important social cue. Humans and other animals respond to conspecifics' fear with increased activity of the amygdala, the brain structure crucial for detecting threats and mounting an appropriate response to them. It is unclear, however, whether the cross-species transmission of threat information involves similar mechanisms, e.g., whether animals respond to the aversively induced emotional arousal of humans with activation of fear-processing circuits in the brain. Here, we report that when rats interact with a human caregiver who had recently undergone fear conditioning, they show risk assessment behavior and enhanced amygdala activation. The amygdala response involves its two major parts, the basolateral and central, which detect a threat and orchestrate defensive responses. Further, we show that humans who learn about a threat by observing another aversively aroused human, similar to rats, activate the basolateral and centromedial parts of the amygdala. Our results demonstrate that rats detect the emotional arousal of recently aversively stimulated caregivers and suggest that cross-species social transmission of threat information may involve similar neural circuits in the amygdala as the within-species transmission.


Subject(s)
Central Amygdaloid Nucleus , Humans , Rats , Animals , Fear/physiology , Learning , Arousal/physiology , Affect
2.
Genes Brain Behav ; 18(1): e12525, 2019 01.
Article in English | MEDLINE | ID: mdl-30311398

ABSTRACT

Different rat and mouse models are used in studies of social interactions. Simple behavioral measures, which are commonly used in the laboratory, allow to perform relatively short experiments and to use multiple brain manipulation techniques. However, too much focus on the simplest behavioral models generates a serious risk of reducing ecological validity or even studying phenomena which would never happen outside of the laboratory. In this review, we discuss the suitability of mice and rats as model organisms for studying social behaviors, with focus on social transmission of fear paradigms. First, we briefly introduce the concept of domestication and what impact it had on laboratory rodents. Then, we present two aspects of social behaviors, sociability and dominance, which are crucial for social organization in these species. Finally, we present experimental models used for studying how animals transmit information about danger between each other, and how these models may reflect what happens in the natural environment. We discuss the difficulties that arise from our limited knowledge of rat and mouse ecology, especially their social life. We also explore the subject of balancing ecological validity and controllability in rodent models of social behaviors, the latter being particularly important for studying brain activity. Although it is very challenging, an efficient program for social neuroscience research should, in our opinion, aim at bridging the gap between laboratory and field studies.


Subject(s)
Ecosystem , Ethology/standards , Genetics, Behavioral/standards , Social Behavior , Animal Communication , Animals , Domestication , Ethology/methods , Genetics, Behavioral/methods , Mice , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...