Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Soc Mass Spectrom ; 34(12): 2811-2821, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38010134

ABSTRACT

Adeno-associated virus (AAV) capsids are among the leading gene delivery platforms used to treat a vast array of human diseases and conditions. AAVs exist in a variety of serotypes due to differences in viral protein (VP) sequences with distinct serotypes targeting specific cells and tissues. As the utility of AAVs in gene therapy increases, ensuring their specific composition is imperative for the correct targeting and gene delivery. From a quality control perspective, current analytical tools are limited in their selectivity for viral protein (VP) subunits due to their sequence similarities, instrumental difficulties in assessing the large molecular weights of intact capsids, and the uncertainty in distinguishing empty and filled capsids. To address these challenges, we combined two distinct analytical workflows that assess the intact capsids and VP subunits separately. First, a selective temporal overview of resonant ion (STORI)-based charge detection-mass spectrometry (CD-MS) was applied for characterization of the intact capsids. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations were then used for the capsid denaturing measurements. This multimethod combination was applied to three AAV serotypes (AAV2, AAV6, and AAV8) to evaluate their intact empty and filled capsid ratios and then examine the distinct VP sequences and modifications present.


Subject(s)
Capsid , Dependovirus , Humans , Capsid/chemistry , Capsid/metabolism , Dependovirus/genetics , Dependovirus/metabolism , Capsid Proteins/chemistry , Gene Transfer Techniques , Viral Proteins/metabolism
2.
Anal Chem ; 95(37): 13889-13896, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37672632

ABSTRACT

Charge detection mass spectrometry (CDMS) enables the direct mass measurement of heterogeneous samples on the megadalton scale, as the charge state for a single ion is determined simultaneously with the mass-to-charge ratio (m/z). Surface-induced dissociation (SID) is an effective activation method to dissociate non-intertwined, non-covalent protein complexes without extensive gas-phase restructuring, producing various subcomplexes reflective of the native protein topology. Here, we demonstrate that using CDMS after SID on an Orbitrap platform offers subunit connectivity, topology, proteoform information, and relative interfacial strengths of the intact macromolecular assemblies. SID dissects the capsids (∼3.7 MDa) of adeno-associated viruses (AAVs) into trimer-containing fragments (3mer, 6mer, 9mer, 15mer, etc.) that can be detected by the individual ion mass spectrometry (I2MS) approach on Orbitrap instruments. SID coupled to CDMS provides unique structural insights into heterogeneous assemblies that are not readily obtained by traditional MS measurements.


Subject(s)
Capsid , Dependovirus , Mass Spectrometry , Software
3.
J Am Soc Mass Spectrom ; 34(6): 986-990, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37126782

ABSTRACT

The aggregation of islet amyloid polypeptide (IAPP) is associated with ß-cell dysfunction in type 2 diabetes (T2D) in humans. One possible mechanism of toxicity is the interaction of IAPP oligomers with lipid membranes to disrupt the bilayer integrity and/or homeostasis of the cell. Amino acid sequence variations of IAPPs between species can greatly decrease their propensity for aggregation. For example, human IAPP is toxic to ß-cells, but rat and pig IAPP are not. However, it is not clear how these differences affect membrane association. Using native mass spectrometry with lipid nanodiscs, we explored the differences in the association of human, rat, and pig IAPP with lipid bilayers. We discovered that human and rat IAPP bound nanodiscs with anionic dipalmitoyl-phosphatidylglycerol (DPPG) lipids, but pig IAPP did not. Furthermore, human and rat IAPP interacted differently with the membrane. Human IAPP show potential tetramer complexes, but rat IAPP associated with the membrane sequentially. Thus, overall IAPP-bilayer interactions are not necessarily related to disease, but small differences in oligomeric behavior at the membrane may instead play a role.


Subject(s)
Diabetes Mellitus, Type 2 , Islet Amyloid Polypeptide , Rats , Humans , Animals , Swine , Islet Amyloid Polypeptide/chemistry , Diabetes Mellitus, Type 2/metabolism , Amyloid/chemistry , Lipid Bilayers/chemistry , Amino Acid Sequence
4.
bioRxiv ; 2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37066191

ABSTRACT

Pseudosymmetric hetero-oligomers with three or more unique subunits with overall structural (but not sequence) symmetry play key roles in biology, and systematic approaches for generating such proteins de novo would provide new routes to controlling cell signaling and designing complex protein materials. However, the de novo design of protein hetero-oligomers with three or more distinct chains with nearly identical structures is a challenging problem because it requires the accurate design of multiple protein-protein interfaces simultaneously. Here, we describe a divide-and-conquer approach that breaks the multiple-interface design challenge into a set of more tractable symmetric single-interface redesign problems, followed by structural recombination of the validated homo-oligomers into pseudosymmetric hetero-oligomers. Starting from de novo designed circular homo-oligomers composed of 9 or 24 tandemly repeated units, we redesigned the inter-subunit interfaces to generate 15 new homo-oligomers and recombined them to make 17 new hetero-oligomers, including ABC heterotrimers, A2B2 heterotetramers, and A3B3 and A2B2C2 heterohexamers which assemble with high structural specificity. The symmetric homo-oligomers and pseudosymmetric hetero-oligomers generated for each system share a common backbone, and hence are ideal building blocks for generating and functionalizing larger symmetric assemblies.

5.
Anal Chem ; 94(34): 11723-11727, 2022 08 30.
Article in English | MEDLINE | ID: mdl-35981215

ABSTRACT

Adeno-associated viral (AAV) vectors have emerged as gene therapy and vaccine delivery systems. Differential scanning fluorimetry or differential scanning calorimetry is commonly used to measure the thermal stability of AAVs, but these global methods are unable to distinguish the stabilities of different AAV subpopulations in the same sample. To address this challenge, we combined charge detection-mass spectrometry (CD-MS) with a variable temperature (VT) electrospray source that controls the temperature of the solution prior to electrospray. Using VT-CD-MS, we measured the thermal stabilities of empty and filled capsids. We found that filled AAVs ejected their cargo first and formed intermediate empty capsids before completely dissociating. Finally, we observed that pH stress caused a major decrease in thermal stability. This new approach better characterizes the thermal dissociation of AAVs, providing the simultaneous measurement of the stabilities and dissociation pathways of different subpopulations.


Subject(s)
Capsid , Dependovirus , Capsid/chemistry , Capsid Proteins/chemistry , Dependovirus/chemistry , Mass Spectrometry , Temperature
6.
Methods Mol Biol ; 2500: 159-180, 2022.
Article in English | MEDLINE | ID: mdl-35657593

ABSTRACT

Intact protein, top-down, and native mass spectrometry (MS) generally requires the deconvolution of electrospray ionization (ESI) mass spectra to assign the mass of components from their charge state distribution. For small, well-resolved proteins, the charge can usually be assigned based on the isotope distribution. However, it can be challenging to determine charge states with larger proteins that lack isotopic resolution, in complex mass spectra with overlapping charge states, and in native spectra that show adduction. To overcome these challenges, UniDec uses Bayesian deconvolution to assign charge states and to create a zero-charge mass distribution. UniDec is fast, user-friendly, and includes a range of advanced tools to assist in intact protein, top-down, and native MS data analysis. This chapter provides a step-by-step protocol and an in-depth explanation of the UniDec algorithm, and highlights the parameters that affect the deconvolution. It also covers advanced data analysis tools, such as macromolecular mass defect analysis and tools for assigning potential PTMs and bound ligands. Overall, this chapter provides users with a deeper understanding of UniDec, which will enhance the quality of deconvolutions and allow for more intricate MS experiments.


Subject(s)
Proteins , Spectrometry, Mass, Electrospray Ionization , Algorithms , Bayes Theorem , Proteins/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
7.
Biochemistry ; 61(11): 1014-1021, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35616927

ABSTRACT

Lipid membranes have recently been implicated in protein misfolding and disease etiology, including for α-synuclein and Parkinson's disease. However, studying the intersection of protein complex formation, membrane interactions, and bilayer disruption simultaneously is challenging. In particular, the efficacies of small molecule inhibitors for toxic protein aggregation are not well understood. Here, we used native mass spectrometry in combination with lipid nanodiscs to study α-synuclein-membrane interactions. α-Synuclein did not interact with zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipids but interacted strongly with anionic 1,2-dimyristoyl-sn-glycero-3-phospho(1'-rac-glycerol) lipids, eventually leading to membrane disruption. Unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG) lipid nanodiscs were also prone to bilayer disruption, releasing α-synuclein:POPG complexes. Interestingly, the fibril inhibitor, (-)-epigallocatechin gallate (EGCG), prevented membrane disruption but did not prevent the incorporation of α-synuclein into nanodisc complexes. Thus, although EGCG inhibits fibrillization, it does not inhibit α-synuclein from associating with the membrane.


Subject(s)
Catechin , alpha-Synuclein , Catechin/analogs & derivatives , Catechin/pharmacology , Glycerol , Lipid Bilayers/chemistry , Lipids
8.
J Am Soc Mass Spectrom ; 33(6): 1031-1037, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35588532

ABSTRACT

Native mass spectrometry (MS) and charge detection-mass spectrometry (CD-MS) have become versatile tools for characterizing a wide range of proteins and macromolecular complexes. Both commonly use nanoelectrospray ionization (nESI) from pulled borosilicate needles, but some analytes are known to nonspecifically adsorb to the glass, which may lower sensitivity and limit the quality of the data. To improve the sensitivity of native MS and CD-MS, we modified the surface of nESI needles with inert surface modifiers, including polyethylene-glycol. We found that the surface modification improved the signal intensity for native MS of proteins and for CD-MS of adeno-associated viral capsids. Based on mechanistic comparisons, we hypothesize that the improvement is more likely due to an increased flow rate with coated ESI needles rather than less nonspecific adsorption. In any case, these surface-modified needles provide a simple and inexpensive method for improving the sensitivity of challenging analytes.


Subject(s)
Needles , Spectrometry, Mass, Electrospray Ionization , Proteins/analysis , Spectrometry, Mass, Electrospray Ionization/methods
9.
FASEB J ; 36(3): e22198, 2022 03.
Article in English | MEDLINE | ID: mdl-35199390

ABSTRACT

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Subject(s)
Allosteric Site , Escherichia coli Proteins/chemistry , Heat-Shock Proteins/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Allosteric Regulation , Chaperonin 10/chemistry , Chaperonin 10/genetics , Chaperonin 10/metabolism , Escherichia coli , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
10.
J Am Soc Mass Spectrom ; 33(1): 62-67, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34866389

ABSTRACT

Antimicrobial peptides (AMPs) are an important part of the innate immune system and demonstrate promising applications in the fight against antibiotic-resistant infections due to their unique mechanism of targeting bacterial membranes. However, it is challenging to study the interactions of these peptides within lipid bilayers, making it difficult to understand their mechanisms of toxicity and selectivity. Here, we used fast photochemical oxidation of peptides, an irreversible footprinting technique that labels solvent accessible residues, and native charge detection-mass spectrometry to study AMP-lipid interactions with different lipid bilayer nanodiscs. We observed differences in the oxidation of two peptides, indolicidin and LL-37, in three distinct lipid environments, which reveal their affinity for lipid bilayers. Our findings suggest that indolicidin interacts with lipid head groups via a simple charge-driven mechanism, but LL-37 is more specific for Escherichia coli nanodiscs. These results provide complementary information on the potential modes of action and lipid selectivity of AMPs.


Subject(s)
Antimicrobial Peptides/chemistry , Lipid Bilayers/chemistry , Nanostructures/chemistry , Photochemical Processes , Antimicrobial Peptides/analysis , Escherichia coli/chemistry , Mass Spectrometry/methods , Oxidation-Reduction
11.
Anal Chem ; 93(44): 14722-14729, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34705424

ABSTRACT

Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and measuring biomolecular interactions. Native MS usually requires the resolution of different charge states produced by electrospray ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolution. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational deconvolution of CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate its ability to improve the CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natural lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide a valuable new computational tool for CD-MS data analysis.


Subject(s)
Proteins , Spectrometry, Mass, Electrospray Ionization , Algorithms , Ions , Software
12.
Anal Chem ; 93(14): 5972-5979, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33797873

ABSTRACT

Native mass spectrometry (MS) with nanodiscs is a promising technique for characterizing membrane protein and peptide interactions in lipid bilayers. However, prior studies have used nanodiscs made of only one or two lipids, which lack the complexity of a natural lipid bilayer. To better model specific biological membranes, we developed model mammalian, bacterial, and mitochondrial nanodiscs with up to four different phospholipids. Careful selection of lipids with similar masses that balance the fluidity and curvature enabled these complex nanodiscs to be assembled and resolved with native MS. We then applied this approach to characterize the specificity and incorporation of LL-37, a human antimicrobial peptide, in single-lipid nanodiscs versus model bacterial nanodiscs. Overall, development of these model membrane nanodiscs reveals new insights into the assembly of complex nanodiscs and provides a useful toolkit for studying membrane protein, peptide, and lipid interactions in model biological membranes.


Subject(s)
Nanostructures , Animals , Humans , Lipid Bilayers , Mass Spectrometry , Membrane Proteins , Phospholipids
13.
Chem Commun (Camb) ; 56(100): 15651-15654, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33355562

ABSTRACT

In the study of membrane proteins and antimicrobial peptides, nanodiscs have emerged as a valuable membrane mimetic to solubilze these molecules in a lipid bilayer. We present the structural characterization of nanodiscs using native mass spectrometry and surface-induced dissociation, which are powerful tools in structural biology.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Mass Spectrometry , Molecular Structure , Surface Properties
14.
J Am Soc Mass Spectrom ; 30(8): 1416-1425, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30972726

ABSTRACT

Native mass spectrometry (MS) has become an important tool for the analysis of membrane proteins. Although detergent micelles are the most commonly used method for solubilizing membrane proteins for native MS, nanoscale lipoprotein complexes such as nanodiscs are emerging as a promising complementary approach because they solubilize membrane proteins in a lipid bilayer environment. However, prior native MS studies of intact nanodiscs have employed only a limited set of phospholipids that are similar in mass. Here, we extend the range of lipids that are amenable to native MS of nanodiscs by combining lipids with masses that are simple integer multiples of each other. Although these lipid combinations create complex distributions, overlap between resonant peak series allows interpretation of nanodisc spectra containing glycolipids, sterols, and cardiolipin. We also investigate the gas-phase stability of nanodiscs with these new lipids towards collisional activation. We observe that negative ionization mode or charge reduction stabilizes nanodiscs and is essential to preserving labile lipids such as sterols. These new approaches to native MS of nanodiscs will enable future studies of membrane proteins embedded in model membranes that more accurately mimic natural bilayers. Graphical Abstract.


Subject(s)
Lipids/chemistry , Membrane Proteins/analysis , Nanostructures/chemistry , Animals , Cardiolipins/chemistry , Cattle , Cholesterol/chemistry , G(M1) Ganglioside/chemistry , Lipid Bilayers/chemistry , Mass Spectrometry , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...